pgr_trspVia_withPoints
- 拟议¶
pgr_trspVia_withPoints
- 经过一系列具有限制的顶点和/或点的路线。
Warning
下一版本的拟议功能。
它们并未正式出现在当前版本中。
它们可能会正式成为下一个版本的一部分:
这些函数使用 ANY-INTEGER 和 ANY-NUMERICAL
名字可能不会改变。(但仍然有可能改变)
签名可能不会改变。(但仍然有可能改变)
功能可能不会改变。(但仍然有可能改变)
pgTap 测试已经完成。 但可能需要更多。
文档可能需要完善。
可用性
版本 3.4.0
新提议的函数:
pgr_trspVia_withPoints
(One Via)
描述¶
给定一个图、对图边的一组限制、图边上的一组点和一个顶点列表,该函数相当于查找 \(vertex_i\) 和 \(vertex_{i+1}\) 之间的最短路径(其中 \(vertex\) 可以是图上的顶点或点) 对于所有 \(i < size\_of(via\;vertices)\) 尝试不使用受限路径的人。
- 路线:
是一系列路径
- 路径:
是路线的一段。
通用算法如下:
用新点构建图表。
点标识符将转换为负值。
顶点标识符将保持正值。
对于通过限制的解决方案的路径集合,则
执行对路径有限制的 TRSP 算法。
注意,完成此操作后,
U_turn_on_edge
标志将被忽略。
Note
不要在内部查询的标识符上使用负值。
签名¶
一次通过¶
[directed, strict, U_turn_on_edge]
(seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost, route_agg_cost)
的集合- 示例:
在有向图上查找按顺序访问顶点 \(\{-6, 15, -5\}\) 的路线。
SELECT * FROM pgr_trspVia_withPoints(
$$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
$$SELECT path, cost FROM restrictions$$,
$$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
ARRAY[-6, 15, -5]);
seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
1 | 1 | 1 | -6 | 15 | -6 | 4 | 0.3 | 0 | 0
2 | 1 | 2 | -6 | 15 | 7 | 10 | 1 | 0.3 | 0.3
3 | 1 | 3 | -6 | 15 | 8 | 12 | 1 | 1.3 | 1.3
4 | 1 | 4 | -6 | 15 | 12 | 13 | 1 | 2.3 | 2.3
5 | 1 | 5 | -6 | 15 | 17 | 15 | 1 | 3.3 | 3.3
6 | 1 | 6 | -6 | 15 | 16 | 16 | 1 | 4.3 | 4.3
7 | 1 | 7 | -6 | 15 | 15 | -1 | 0 | 5.3 | 5.3
8 | 2 | 1 | 15 | -5 | 15 | 3 | 1 | 0 | 5.3
9 | 2 | 2 | 15 | -5 | 10 | 5 | 0.8 | 1 | 6.3
10 | 2 | 3 | 15 | -5 | -5 | -2 | 0 | 1.8 | 7.1
(10 rows)
参数¶
参数 |
类型 |
默认 |
描述 |
---|---|---|---|
|
如所述的 SQL 查询。 |
||
|
如所述的 SQL 查询。 |
||
via vertices |
|
将要访问的有序顶点标识符数组。
|
其中:
- ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
- ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT
可选参数¶
列 |
类型 |
默认 |
描述 |
---|---|---|---|
|
|
|
|
Via可选参数¶
参数 |
类型 |
默认 |
描述 |
---|---|---|---|
|
|
|
|
|
|
|
|
带点可选参数¶
参数 |
类型 |
默认 |
描述 |
---|---|---|---|
|
|
|
在 [
|
|
|
|
|
内部查询¶
Edges SQL¶
列 |
类型 |
默认 |
描述 |
---|---|---|---|
|
ANY-INTEGER |
边的标识符。 |
|
|
ANY-INTEGER |
边的第一个端点顶点的标识符。 |
|
|
ANY-INTEGER |
边的第二个端点顶点的标识符。 |
|
|
ANY-NUMERICAL |
边( |
|
|
ANY-NUMERICAL |
-1 |
边(
|
其中:
- ANY-INTEGER:
SMALLINT
,INTEGER
,BIGINT
- ANY-NUMERICAL:
SMALLINT
,INTEGER
,BIGINT
,REAL
,FLOAT
Restrictions SQL¶
列 |
类型 |
描述 |
---|---|---|
|
|
形成不允许采用的路径的边缘标识符序列。 - 空数组或 |
|
ANY-NUMERICAL |
走禁路的成本。 |
其中:
- ANY-INTEGER:
SMALLINT
,INTEGER
,BIGINT
- ANY-NUMERICAL:
SMALLINT
,INTEGER
,BIGINT
,REAL
,FLOAT
Points SQL¶
参数 |
类型 |
默认 |
描述 |
---|---|---|---|
|
ANY-INTEGER |
value |
点的标识符。
|
|
ANY-INTEGER |
距离该点“最近”的边的标识符。 |
|
|
ANY-NUMERICAL |
<0,1> 中的值指示距边缘第一个端点的相对位置。 |
|
|
|
|
[
|
其中:
- ANY-INTEGER:
SMALLINT
,INTEGER
,BIGINT
- ANY-NUMERICAL:
SMALLINT
,INTEGER
,BIGINT
,REAL
,FLOAT
结果列¶
列 |
类型 |
描述 |
---|---|---|
|
|
从 1 开始的顺序值。 |
|
|
路径的标识符。 第一条路径的值为 1。 |
|
|
路径中的相对位置。 路径开头的值为 1。 |
|
|
路径起始顶点的标识符。 |
|
|
路径结束顶点的标识符。 |
|
|
从 |
|
|
用于从路径序列中的
|
|
|
从使用 |
|
|
从 |
|
|
从 seq = 1 的 |
Note
当 start_vid
、 end_vid
和 node
列具有负值时,该标识符用于Point。
其他示例¶
对动态点使用 pgr_findCloseEdges
¶
从顶点 \(1\) 开始,按照距离图形最近的顺序访问点 (2.9, 1.8) 上的两个位置。
SELECT * FROM pgr_trspVia_withPoints(
$e$ SELECT * FROM edges $e$,
$r$ SELECT path, cost FROM restrictions $r$,
$p$ SELECT edge_id, round(fraction::numeric, 2) AS fraction, side
FROM pgr_findCloseEdges(
$$SELECT id, geom FROM edges$$,
(SELECT ST_POINT(2.9, 1.8)),
0.5, cap => 2)
$p$,
ARRAY[1, -1, -2], details => true);
seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
1 | 1 | 1 | 1 | -1 | 1 | 6 | 1 | 0 | 0
2 | 1 | 2 | 1 | -1 | 3 | 7 | 1 | 1 | 1
3 | 1 | 3 | 1 | -1 | 7 | 8 | 0.9 | 2 | 2
4 | 1 | 4 | 1 | -1 | -2 | 8 | 0.1 | 2.9 | 2.9
5 | 1 | 5 | 1 | -1 | 11 | 8 | 1 | 3 | 3
6 | 1 | 6 | 1 | -1 | 7 | 10 | 1 | 4 | 4
7 | 1 | 7 | 1 | -1 | 8 | 12 | 1 | 5 | 5
8 | 1 | 8 | 1 | -1 | 12 | 13 | 1 | 6 | 6
9 | 1 | 9 | 1 | -1 | 17 | 15 | 1 | 7 | 7
10 | 1 | 10 | 1 | -1 | 16 | 16 | 1 | 8 | 8
11 | 1 | 11 | 1 | -1 | 15 | 3 | 1 | 9 | 9
12 | 1 | 12 | 1 | -1 | 10 | 5 | 0.8 | 10 | 10
13 | 1 | 13 | 1 | -1 | -1 | -1 | 0 | 10.8 | 10.8
14 | 2 | 1 | -1 | -2 | -1 | 5 | 0.2 | 0 | 10.8
15 | 2 | 2 | -1 | -2 | 11 | 8 | 1 | 0.2 | 11
16 | 2 | 3 | -1 | -2 | 7 | 8 | 0.9 | 1.2 | 12
17 | 2 | 4 | -1 | -2 | -2 | -2 | 0 | 2.1 | 12.9
(17 rows)
点 \(-1`对应于距离点`(2.9, 1.8)\) 最近的边。
点 \(-2`对应于点`(2.9, 1.8)\) 的下一个闭合边。
点 \(-2`在从顶点 :math:`1\) 到点 \(-1\) 的路线上被访问(参见行 ,其中:math:seq = 4)。
用法变化¶
所有这些示例都是关于按有向图上的顺序访问顶点 \(\{-6, 7, -4, 8, -2\}\) 的路线。
SELECT * FROM pgr_trspVia_withPoints(
$$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
$$SELECT path, cost FROM restrictions$$,
$$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
ARRAY[-6, 7, -4, 8, -2]
);
seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
1 | 1 | 1 | -6 | 7 | -6 | 4 | 0.3 | 0 | 0
2 | 1 | 2 | -6 | 7 | 7 | -1 | 0 | 0.3 | 0.3
3 | 2 | 1 | 7 | -4 | 7 | 7 | 1 | 0 | 0.3
4 | 2 | 2 | 7 | -4 | 3 | 6 | 1.3 | 1 | 1.3
5 | 2 | 3 | 7 | -4 | -4 | -1 | 0 | 2.3 | 2.6
6 | 3 | 1 | -4 | 8 | -4 | 6 | 0.7 | 0 | 2.6
7 | 3 | 2 | -4 | 8 | 3 | 7 | 1 | 0.7 | 3.3
8 | 3 | 3 | -4 | 8 | 7 | 4 | 0.6 | 1.7 | 4.3
9 | 3 | 4 | -4 | 8 | 7 | 10 | 1 | 2.3 | 4.9
10 | 3 | 5 | -4 | 8 | 8 | -1 | 0 | 3.3 | 5.9
11 | 4 | 1 | 8 | -2 | 8 | 10 | 1 | 0 | 5.9
12 | 4 | 2 | 8 | -2 | 7 | 8 | 1 | 1 | 6.9
13 | 4 | 3 | 8 | -2 | 11 | 9 | 1 | 2 | 7.9
14 | 4 | 4 | 8 | -2 | 16 | 15 | 0.4 | 3 | 8.9
15 | 4 | 5 | 8 | -2 | -2 | -2 | 0 | 3.4 | 9.3
(15 rows)
第三条路径的总成本。¶
SELECT agg_cost FROM pgr_trspVia_withPoints(
$$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
$$SELECT path, cost FROM restrictions$$,
$$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
ARRAY[-6, 7, -4, 8, -2]
)
WHERE path_id = 3 AND edge <0;
agg_cost
----------
3.3
(1 row)
第三条路径末端的路径总成本。¶
SELECT route_agg_cost FROM pgr_trspVia_withPoints(
$$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
$$SELECT path, cost FROM restrictions$$,
$$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
ARRAY[-6, 7, -4, 8, -2]
)
WHERE path_id = 3 AND edge < 0;
route_agg_cost
----------------
5.9
(1 row)
路由中访问的节点。¶
SELECT row_number() over () as node_seq, node
FROM pgr_trspVia_withPoints(
$$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
$$SELECT path, cost FROM restrictions$$,
$$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
ARRAY[-6, 7, -4, 8, -2]
)
WHERE edge <> -1 ORDER BY seq;
node_seq | node
----------+------
1 | -6
2 | 7
3 | 3
4 | -4
5 | 3
6 | 7
7 | 7
8 | 8
9 | 7
10 | 11
11 | 16
12 | -2
(12 rows)
到达所访问顶点时的路线总成本。¶
SELECT path_id, route_agg_cost FROM pgr_trspVia_withPoints(
$$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
$$SELECT path, cost FROM restrictions$$,
$$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
ARRAY[-6, 7, -4, 8, -2]
)
WHERE edge < 0;
path_id | route_agg_cost
---------+----------------
1 | 0.3
2 | 2.6
3 | 5.9
4 | 9.3
(4 rows)
节点、点的"通过"或"访问"状态。¶
SELECT seq, route_agg_cost, node, agg_cost ,
CASE WHEN edge = -1 THEN $$visits$$
ELSE $$passes in front$$
END as status
FROM pgr_trspVia_withPoints(
$$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
$$SELECT path, cost FROM restrictions$$,
$$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
ARRAY[-6, 7, -4, 8, -2])
WHERE agg_cost <> 0 or seq = 1;
seq | route_agg_cost | node | agg_cost | status
-----+----------------+------+----------+-----------------
1 | 0 | -6 | 0 | passes in front
2 | 0.3 | 7 | 0.3 | visits
4 | 1.3 | 3 | 1 | passes in front
5 | 2.6 | -4 | 2.3 | visits
7 | 3.3 | 3 | 0.7 | passes in front
8 | 4.3 | 7 | 1.7 | passes in front
9 | 4.9 | 7 | 2.3 | passes in front
10 | 5.9 | 8 | 3.3 | visits
12 | 6.9 | 7 | 1 | passes in front
13 | 7.9 | 11 | 2 | passes in front
14 | 8.9 | 16 | 3 | passes in front
15 | 9.3 | -2 | 3.4 | passes in front
(12 rows)
模拟算法的工作原理。¶
该算法执行 pgr_withPointsVia - 拟议
SELECT * FROM pgr_withPointsVia(
$$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
$$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
ARRAY[-6, 15, -5]);
seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
1 | 1 | 1 | -6 | 15 | -6 | 4 | 0.3 | 0 | 0
2 | 1 | 2 | -6 | 15 | 7 | 8 | 1 | 0.3 | 0.3
3 | 1 | 3 | -6 | 15 | 11 | 9 | 1 | 1.3 | 1.3
4 | 1 | 4 | -6 | 15 | 16 | 16 | 1 | 2.3 | 2.3
5 | 1 | 5 | -6 | 15 | 15 | -1 | 0 | 3.3 | 3.3
6 | 2 | 1 | 15 | -5 | 15 | 3 | 1 | 0 | 3.3
7 | 2 | 2 | 15 | -5 | 10 | 5 | 0.8 | 1 | 4.3
8 | 2 | 3 | 15 | -5 | -5 | -2 | 0 | 1.8 | 5.1
(8 rows)
检测哪些路径通过了限制,在本例中是针对从 -6
到 15
的 path_id = 1
,因为路径 \(9 \rightarrow 16\) 受到限制。
对冲突路径执行 TRSP算法。
SELECT 1 AS path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost
FROM pgr_trsp_withPoints(
$$SELECT id, source, target, cost, reverse_cost FROM edges$$,
$$SELECT path, cost FROM restrictions$$,
$$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
-6, 15);
path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
---------+----------+-----------+---------+------+------+------+----------
1 | 1 | -6 | 15 | -6 | 4 | 0.3 | 0
1 | 2 | -6 | 15 | 7 | 10 | 1 | 0.3
1 | 3 | -6 | 15 | 8 | 12 | 1 | 1.3
1 | 4 | -6 | 15 | 12 | 13 | 1 | 2.3
1 | 5 | -6 | 15 | 17 | 15 | 1 | 3.3
1 | 6 | -6 | 15 | 16 | 16 | 1 | 4.3
1 | 7 | -6 | 15 | 15 | -1 | 0 | 5.3
(7 rows)
从 pgr_withPointsVia - 拟议 的结果中移除冲突的路径,并使用 pgr_trsp - 拟议 算法的结果构建解决方案:
WITH
solutions AS (
SELECT path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost
FROM pgr_withPointsVia(
$$SELECT id, source, target, cost, reverse_cost FROM edges$$,
$$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
ARRAY[-6, 15, -5]) WHERE path_id != 1
UNION
SELECT 1 AS path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost
FROM pgr_trsp_withPoints(
$$SELECT id, source, target, cost, reverse_cost FROM edges$$,
$$SELECT path, cost FROM restrictions$$,
$$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
-6, 15)),
with_seq AS (
SELECT row_number() over(ORDER BY path_id, path_seq) AS seq, *
FROM solutions),
aggregation AS (SELECT seq, SUM(cost) OVER(ORDER BY seq) AS route_agg_cost FROM with_seq)
SELECT with_seq.*, COALESCE(route_agg_cost, 0) AS route_agg_cost
FROM with_seq LEFT JOIN aggregation ON (with_seq.seq = aggregation.seq + 1);
seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
1 | 1 | 1 | -6 | 15 | -6 | 4 | 0.3 | 0 | 0
2 | 1 | 2 | -6 | 15 | 7 | 10 | 1 | 0.3 | 0.3
3 | 1 | 3 | -6 | 15 | 8 | 12 | 1 | 1.3 | 1.3
4 | 1 | 4 | -6 | 15 | 12 | 13 | 1 | 2.3 | 2.3
5 | 1 | 5 | -6 | 15 | 17 | 15 | 1 | 3.3 | 3.3
6 | 1 | 6 | -6 | 15 | 16 | 16 | 1 | 4.3 | 4.3
7 | 1 | 7 | -6 | 15 | 15 | -1 | 0 | 5.3 | 5.3
8 | 2 | 1 | 15 | -5 | 15 | 3 | 1 | 0 | 5.3
9 | 2 | 2 | 15 | -5 | 10 | 5 | 0.8 | 1 | 6.3
10 | 2 | 3 | 15 | -5 | -5 | -2 | 0 | 1.8 | 7.1
(10 rows)
得到与 pgr_trspVia_withPoints
相同的结果:
SELECT * FROM pgr_trspVia_withPoints(
$$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
$$SELECT path, cost FROM restrictions$$,
$$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
ARRAY[-6, 15, -5]);
seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
1 | 1 | 1 | -6 | 15 | -6 | 4 | 0.3 | 0 | 0
2 | 1 | 2 | -6 | 15 | 7 | 10 | 1 | 0.3 | 0.3
3 | 1 | 3 | -6 | 15 | 8 | 12 | 1 | 1.3 | 1.3
4 | 1 | 4 | -6 | 15 | 12 | 13 | 1 | 2.3 | 2.3
5 | 1 | 5 | -6 | 15 | 17 | 15 | 1 | 3.3 | 3.3
6 | 1 | 6 | -6 | 15 | 16 | 16 | 1 | 4.3 | 4.3
7 | 1 | 7 | -6 | 15 | 15 | -1 | 0 | 5.3 | 5.3
8 | 2 | 1 | 15 | -5 | 15 | 3 | 1 | 0 | 5.3
9 | 2 | 2 | 15 | -5 | 10 | 5 | 0.8 | 1 | 6.3
10 | 2 | 3 | 15 | -5 | -5 | -2 | 0 | 1.8 | 7.1
(10 rows)
- 示例 8:
有时,当设置为
false
时,U_turn_on_edge
标志会被忽略。
第一步,执行 pgr_withPointsVia - 拟议 不考虑在同一条边上进行掉头。但是路径 \(9 \rightarrow 16\) (第4行和第5行)受到限制,结果中使用了它。
SELECT * FROM pgr_withPointsVia(
$$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
$$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
ARRAY[6, 7, 6], U_turn_on_edge => false);
seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
1 | 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0 | 0
2 | 1 | 2 | 6 | 7 | 7 | -1 | 0 | 1 | 1
3 | 2 | 1 | 7 | 6 | 7 | 8 | 1 | 0 | 1
4 | 2 | 2 | 7 | 6 | 11 | 9 | 1 | 1 | 2
5 | 2 | 3 | 7 | 6 | 16 | 16 | 1 | 2 | 3
6 | 2 | 4 | 7 | 6 | 15 | 3 | 1 | 3 | 4
7 | 2 | 5 | 7 | 6 | 10 | 2 | 1 | 4 | 5
8 | 2 | 6 | 7 | 6 | 6 | -2 | 0 | 5 | 6
(8 rows)
当执行 pgr_trsp_withPoints - 拟议 针对冲突路径的算法时,没有 U_turn_on_edge
标志。
SELECT 5 AS path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost
FROM pgr_trsp_withPoints(
$$SELECT id, source, target, cost, reverse_cost FROM edges$$,
$$SELECT path, cost FROM restrictions$$,
$$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
7, 6);
path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
---------+----------+-----------+---------+------+------+------+----------
5 | 1 | 7 | 6 | 7 | 4 | 1 | 0
5 | 2 | 7 | 6 | 6 | -1 | 0 | 1
(2 rows)
因此,当设置为 false
时,结果会忽略 U_turn_on_edge
标志。 从 pgr_withPointsVia - 拟议 结果中,它删除了冲突路径,并使用 pgr_trsp - 拟议 算法的结果构建解决方案。 在这种情况下,使用相同的边缘完成 U 形转弯。
SELECT * FROM pgr_trspVia_withPoints(
$$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
$$SELECT path, cost FROM restrictions$$,
$$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
ARRAY[6, 7, 6], U_turn_on_edge => false);
seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
1 | 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0 | 0
2 | 1 | 2 | 6 | 7 | 7 | -1 | 0 | 1 | 1
3 | 2 | 1 | 7 | 6 | 7 | 4 | 1 | 0 | 1
4 | 2 | 2 | 7 | 6 | 6 | -2 | 0 | 1 | 2
(4 rows)
另请参阅¶
索引和表格