
pgRouting Manual
Release 2.3.2 (master)

pgRouting Contributors

July 22, 2017

Contents

i

ii

pgRouting Manual, Release 2.3.2 (master)

pgRouting extends the PostGIS1/PostgreSQL2 geospatial database to provide geospatial routing and other network
analysis functionality.

This is the manual for pgRouting 2.3.2 (master).

The pgRouting Manual is licensed under a Creative Commons Attribution-Share Alike 3.0 License3. Feel free
to use this material any way you like, but we ask that you attribute credit to the pgRouting Project and wherever
possible, a link back to http://pgrouting.org. For other licenses used in pgRouting see the License page.

1http://postgis.net
2http://postgresql.org
3http://creativecommons.org/licenses/by-sa/3.0/

Contents 1

http://postgis.net
http://postgresql.org
http://creativecommons.org/licenses/by-sa/3.0/
http://pgrouting.org

pgRouting Manual, Release 2.3.2 (master)

2 Contents

CHAPTER 1

General

1.1 Introduction

pgRouting is an extension of PostGIS1 and PostgreSQL2 geospatial database and adds routing and other network
analysis functionality. A predecessor of pgRouting – pgDijkstra, written by Sylvain Pasche from Camptocamp3,
was later extended by Orkney4 and renamed to pgRouting. The project is now supported and maintained by
Georepublic5, iMaptools6 and a broad user community.

pgRouting is an OSGeo Labs7 project of the OSGeo Foundation8 and included on OSGeo Live9.

1.1.1 License

The following licenses can be found in pgRouting:

License
GNU General Public
License, version 2

Most features of pgRouting are available under GNU General Public
License, version 210.

Boost Software License -
Version 1.0

Some Boost extensions are available under Boost Software License - Version
1.011.

MIT-X License Some code contributed by iMaptools.com is available under MIT-X license.
Creative Commons
Attribution-Share Alike 3.0
License

The pgRouting Manual is licensed under a Creative Commons
Attribution-Share Alike 3.0 License12.

In general license information should be included in the header of each source file.

1http://postgis.net
2http://postgresql.org
3http://camptocamp.com
4http://www.orkney.co.jp
5http://georepublic.info
6http://imaptools.com/
7http://wiki.osgeo.org/wiki/OSGeo_Labs
8http://osgeo.org
9http://live.osgeo.org/

10http://www.gnu.org/licenses/gpl-2.0.html
11http://www.boost.org/LICENSE_1_0.txt
12http://creativecommons.org/licenses/by-sa/3.0/

3

http://postgis.net
http://postgresql.org
http://camptocamp.com
http://www.orkney.co.jp
http://georepublic.info
http://imaptools.com/
http://wiki.osgeo.org/wiki/OSGeo_Labs
http://osgeo.org
http://live.osgeo.org/
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html
http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/LICENSE_1_0.txt
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

pgRouting Manual, Release 2.3.2 (master)

1.1.2 Contributors

This Release Contributors

Individuals (in alphabetical order)

Andrea Nardellli, Daniel Kastl, Ko Nagase, Mario Basa, Regina Obe, Rohith Reddy, Stephen Woodbridge, Vir-
ginia Vergara

And all the people that gives us a little of their time making comments, finding issues, making pull requests etc.

Corporate Sponsors (in alphabetical order)

These are corporate entities that have contributed developer time, hosting, or direct monetary funding to the
pgRouting project:

• Georepublic13

• Google Summer of Code14

• iMaptools15

• Paragon Corporation16

Contributors Past & Present:

Individuals (in alphabetical order)

Akio Takubo, Andrea Nardelli, Anton Patrushev, Ashraf Hossain, Christian Gonzalez, Daniel Kastl, Dave Potts,
David Techer, Denis Rykov, Ema Miyawaki, Florian Thurkow, Frederic Junod, Gerald Fenoy, Jay Mahadeokar,
Jinfu Leng, Kai Behncke, Kishore Kumar, Ko Nagase, Manikata Kondeti, Mario Basa, Martin Wiesenhaan,
Maxim Dubinin, Mohamed Zia, Mukul Priya, Razequl Islam, Regina Obe, Rohith Reddy, Sarthak Agarwal,
Stephen Woodbridge, Sylvain Housseman, Sylvain Pasche, Virginia Vergara

Corporate Sponsors (in alphabetical order)

These are corporate entities that have contributed developer time, hosting, or direct monetary funding to the
pgRouting project:

• Camptocamp

• CSIS (University of Tokyo)

• Georepublic

• Google Summer of Code

• iMaptools

• Orkney

• Paragon Corporation

4 Chapter 1. General

https://georepublic.info/en/
https://developers.google.com/open-source/gsoc/
http://imaptools.com
http://www.paragoncorporation.com/

pgRouting Manual, Release 2.3.2 (master)

17

Fig. 1.1: Boost Graph Inside

1.1.3 Inside

1.1.4 More Information

• The latest software, documentation and news items are available at the pgRouting web site
http://pgrouting.org.

• PostgreSQL database server at the PostgreSQL main site http://www.postgresql.org.

• PostGIS extension at the PostGIS project web site http://postgis.net.

• Boost C++ source libraries at http://www.boost.org.

• Computational Geometry Algorithms Library (CGAL) at http://www.cgal.org.

1.2 Installation

This is a basic guide to download and install pgRouting.

The specific instructions for any given OS distribution may vary depending on the various package maintainers.
Contact the specific OS package maintainer for details.

Note: The following are only general instructions.

Additional notes and corrections can be found in Installation wiki18

Also PostGIS provides some information about installation in this Install Guide19

1.2.1 Download

Binary packages are provided for the current version on the following platforms:

Windows

Winnie Bot Builds:

• Winnie Bot Builds20

Production Builds:

• Production builds are part of the Spatial Extensions/PostGIS Bundle available via Application StackBuilder

• Can also get PostGIS Bundle from http://download.osgeo.org/postgis/windows/

13https://georepublic.info/en/
14https://developers.google.com/open-source/gsoc/
15http://imaptools.com
16http://www.paragoncorporation.com/
18https://github.com/pgRouting/pgrouting/wiki/Notes-on-Download%2C-Installation-and-building-pgRouting
19http://www.postgis.us/presentations/postgis_install_guide_22.html
20http://postgis.net/windows_downloads

1.2. Installation 5

http://www.boost.org/libs/graph
http://pgrouting.org
http://www.postgresql.org
http://postgis.net
http://www.boost.org
http://www.cgal.org
https://github.com/pgRouting/pgrouting/wiki/Notes-on-Download%2C-Installation-and-building-pgRouting
http://www.postgis.us/presentations/postgis_install_guide_22.html
http://postgis.net/windows_downloads
http://download.osgeo.org/postgis/windows/

pgRouting Manual, Release 2.3.2 (master)

Ubuntu

pgRouting on Ubuntu can be installed using packages from a PostgreSQL repository:

Using a terminal window:

Create /etc/apt/sources.list.d/pgdg.list. The distributions are called codename-pgdg.
sudo sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt/ $(lsb_release -cs)-pgdg main" > /etc/apt/sources.list.d/pgdg.list'

Import the repository key, update the package lists
sudo apt-get install wget ca-certificates
wget --quiet -O - https://www.postgresql.org/media/keys/ACCC4CF8.asc | sudo apt-key add -
sudo apt-get update

Install pgrouting based on your postgres Installation: for this example is 9.3
sudo apt-get install postgresql-9.3-pgrouting

• To be up-to-date with changes and improvements

sudo apt-get update & sudo apt-get upgrade

RHEL/CentOS

• Add repositories for dependencies:

wget http://repo.enetres.net/enetres.repo -O /etc/yum.repos.d/enetres.repo
wget http://nextgis.ru/programs/centos/nextgis.repo -O /etc/yum.repos.d/nextgis.repo
yum install epel-release

• Install PostgreSQL and PostGIS according to this21 instructions.

• Install CGAL:

yum install libCGAL10

• Install pgRouting:

yum install pgrouting_94

More info (and packages for CentOS) can be found here22.

Fedora

• Fedora RPM’s: https://admin.fedoraproject.org/pkgdb/package/rpms/pgRouting/

FreeBSD

pgRouting can be installed via ports:

cd /usr/ports/databases/pgRouting
make install clean

OS X

• Homebrew

brew install pgrouting

21https://trac.osgeo.org/postgis/wiki/UsersWikiPostGIS21CentOS6pgdg
22https://github.com/nextgis/gis_packages_centos/wiki/Using-this-repo

6 Chapter 1. General

https://trac.osgeo.org/postgis/wiki/UsersWikiPostGIS21CentOS6pgdg
https://github.com/nextgis/gis_packages_centos/wiki/Using-this-repo
https://admin.fedoraproject.org/pkgdb/package/rpms/pgRouting/

pgRouting Manual, Release 2.3.2 (master)

Source Package

You can find all the pgRouting Releases:

https://github.com/pgRouting/pgrouting/releases

See Build Guide to build the binaries from the source.

Using Git

Git protocol (read-only):

git clone git://github.com/pgRouting/pgrouting.git

HTTPS protocol (read-only):

git clone https://github.com/pgRouting/pgrouting.git

See Build Guide to build the binaries from the source.

1.2.2 Installing in the database

pgRouting is an extension.

CREATE EXTENSION postgis;
CREATE EXTENSION pgrouting;

1.2.3 Upgrading the database

To upgrade pgRouting to version 2.x.y use the following command:

ALTER EXTENSION pgrouting UPDATE TO "2.x.y";

For example to upgrade to 2.2.3

.. code-block:: sql

ALTER EXTENSION pgrouting UPDATE TO "2.2.3";

1.3 Build Guide

1.3.1 Dependencies

To be able to compile pgRouting make sure that the following dependencies are met:

• C and C++0x compilers

• Postgresql version >= 9.1

• PostGIS version >= 2.0

• The Boost Graph Library (BGL). Version >= 1.46

• CMake >= 2.8.8

• CGAL >= 4.2

• (optional, for Documentation) Sphinx >= 1.1

• (optional, for Documentation as PDF) Latex >= [TBD]

1.3. Build Guide 7

https://github.com/pgRouting/pgrouting/releases

pgRouting Manual, Release 2.3.2 (master)

1.3.2 Configuration

PgRouting uses the cmake system to do the configuration.

The following instructions start from path/to/pgrouting/

Ccreate the build directory

$ mkdir build

To configure:

$ cd build
$ cmake -L ..

Configurable variables

The documentation configurable variables are:

WITH_DOC BOOL=OFF – Turn on/off building the documentation

BUILD_HTML BOOL=ON – If WITH_DOC=ON, turn on/off building HTML

BUILD_LATEX BOOL=OFF – If WITH_DOC=ON, turn on/off building PDF

BUILD_MAN BOOL=OFF – If WITH_DOC=ON, turn on/off building MAN pages

Configuring with documentation

$ cmake -DWITH_DOC=ON ..

Note: Most of the effort of the documentation has being on the html files.

1.3.3 Building

Using make to build the code and the docuemtnation

The following instructions start from path/to/pgrouting/build

$ make # build the code but not the documentation
$ make doc # build only the documentation
$ make all doc # build both the code and the documentation

1.3.4 Installation and reinstallation

We have tested on several plataforms, For installing or reinstalling all the steps are needed.

Warning: The sql signatures are configured and build in the cmake command.

For MinGW on Windows

$ mkdir build
$ cd build
$ cmake -G"MSYS Makefiles" ..
$ make
$ make install

8 Chapter 1. General

pgRouting Manual, Release 2.3.2 (master)

For Linux

The following instructions start from path/to/pgrouting

$ mkdir build
$ cd build
$ cmake ..
$ make
$ sudo make install

1.3.5 Dependencies Installation

Dependencies Installation

This guide was made while making a fresh ubuntu desktop 14.04.02 installation. Make the neceszry adjustments
to fit your operative system.

Dependencies

To be able to compile pgRouting make sure that the following dependencies are met:

• C and C++0x compilers

• Postgresql version >= 9.1

• PostGIS version >= 2.0

• The Boost Graph Library (BGL). Version >= 1.46

• CMake >= 2.8.8

• CGAL >= 4.2

• (optional, for Documentation) Sphinx >= 1.1

• (optional, for Documentation as PDF) Latex >= [TBD]

Before starting, on a terminal window:

sudo apt-get update

CMake >= 2.8.8 trusty provides: 2.8.8

sudo apt-get install cmake

C and (C++0x or c++11) compilers trusty provides: 4.8

sudo apt-get install g++

Postgresql version >= 9.1 For example in trusty 9.3 is provided:

sudo apt-get install postgreSQL
sudo apt-get install postgresql-server-dev-9.3

PostGIS version >= 2.0 For example in trusty 2.1 is provided:

sudo apt-get install postgresql-9.3-postgis-2.1

1.3. Build Guide 9

pgRouting Manual, Release 2.3.2 (master)

The Boost Graph Library (BGL). Version >= 1.46 trusty provides: 1.54.0

sudo apt-get install libboost-graph-dev

CGAL >= 4.2
sudo apt-get install libcgal-dev

(optional, for Documentation) Sphinx >= 1.1 http://sphinx-doc.org/latest/install.html

trusty provides: 1.2.2

sudo apt-get install python-sphinx

(optional, for Documentation as PDF) Latex >= [TBD] https://latex-project.org/ftp.html

trusty provides: 1.2.2

sudo apt-get install texlive

pgTap & pg_prove & perl for tests Warning: cmake does not test for this packages.

sudo apt-get install -y perl
wget https://github.com/theory/pgtap/archive/master.zip
unzip master.zip
cd pgtap-master
make
sudo make install
sudo ldconfig
sudo apt-get install -y libtap-parser-sourcehandler-pgtap-perl

To run the tests:

tools/testers/algorithm-tester.pl
createdb -U <user> ___pgr___test___
sh ./tools/testers/pg_prove_tests.sh <user>
dropdb -U <user> ___pgr___test___

See Also

Indices and tables

• genindex

• search

1.4 Support

pgRouting community support is available through the pgRouting website23, documentation24, tutorials, mailing
lists and others. If you’re looking for commercial support, find below a list of companies providing pgRouting
development and consulting services.

23http://pgrouting.org/support.html
24http://docs.pgrouting.org

10 Chapter 1. General

http://sphinx-doc.org/latest/install.html
https://latex-project.org/ftp.html
http://pgrouting.org/support.html
http://docs.pgrouting.org

pgRouting Manual, Release 2.3.2 (master)

1.4.1 Reporting Problems

Bugs are reported and managed in an issue tracker25. Please follow these steps:

1. Search the tickets to see if your problem has already been reported. If so, add any extra context you might
have found, or at least indicate that you too are having the problem. This will help us prioritize common
issues.

2. If your problem is unreported, create a new issue26 for it.

3. In your report include explicit instructions to replicate your issue. The best tickets include the exact SQL
necessary to replicate a problem.

4. If you can test older versions of PostGIS for your problem, please do. On your ticket, note the earliest
version the problem appears.

5. For the versions where you can replicate the problem, note the operating system and version of pgRouting,
PostGIS and PostgreSQL.

6. It is recommended to use the following wrapper on the problem to pin point the step that is causing the
problem.

SET client_min_messages TO debug;
<your code>

SET client_min_messages TO notice;

1.4.2 Mailing List and GIS StackExchange

There are two mailing lists for pgRouting hosted on OSGeo mailing list server:

• User mailing list: http://lists.osgeo.org/mailman/listinfo/pgrouting-users

• Developer mailing list: http://lists.osgeo.org/mailman/listinfo/pgrouting-dev

For general questions and topics about how to use pgRouting, please write to the user mailing list.

You can also ask at GIS StackExchange27 and tag the question with pgrouting. Find all questions tagged
with pgrouting under http://gis.stackexchange.com/questions/tagged/pgrouting or subscribe to the pgRouting
questions feed28.

1.4.3 Commercial Support

For users who require professional support, development and consulting services, consider contacting any of the
following organizations, which have significantly contributed to the development of pgRouting:

Company Offices in Website
Georepublic Germany, Japan https://georepublic.info
iMaptools United States http://imaptools.com
Paragon Corporation United States http://www.paragoncorporation.com
Camptocamp Switzerland, France http://www.camptocamp.com

25https://github.com/pgrouting/pgrouting/issues
26https://github.com/pgRouting/pgrouting/issues/new
27http://gis.stackexchange.com/
28http://gis.stackexchange.com/feeds/tag?tagnames=pgrouting&sort=newest

1.4. Support 11

https://github.com/pgrouting/pgrouting/issues
https://github.com/pgRouting/pgrouting/issues/new
http://lists.osgeo.org/mailman/listinfo/pgrouting-users
http://lists.osgeo.org/mailman/listinfo/pgrouting-dev
http://gis.stackexchange.com/
http://gis.stackexchange.com/questions/tagged/pgrouting
http://gis.stackexchange.com/feeds/tag?tagnames=pgrouting&sort=newest
http://gis.stackexchange.com/feeds/tag?tagnames=pgrouting&sort=newest
https://georepublic.info
http://imaptools.com
http://www.paragoncorporation.com
http://www.camptocamp.com

pgRouting Manual, Release 2.3.2 (master)

12 Chapter 1. General

CHAPTER 2

Tutorial

Tutorial

• Getting started

• Routing Topology for an overview of a topology for routing algorithms.

• Graph Analytics for an overview of the analysis of a graph.

• Dictionary of columns & Custom Query that is used in the routing algorithms.

• Performance Tips to improve your performance.

• User’s Recipes List

• Developer’s Guide

For a more complete introduction how to build a routing application read the pgRouting Workshop1.

2.1 Tutorial

Getting started

• How to create a database to use for our project

• How to load some data

• How to build a topology

• How to check your graph for errors

• How to compute a route

• How to use other tools to view your graph and route

• How to create a web app

Advanced Topics

• Routing Topology for an overview of a topology for routing algorithms.

• Graph Analytics for an overview of the analysis of a graph.

• Dictionary of columns & Custom Query that is used in the routing algorithms.

• Performance Tips to improve your performance.

1http://workshop.pgrouting.org

13

http://workshop.pgrouting.org

pgRouting Manual, Release 2.3.2 (master)

2.1.1 Getting Started

This is a simple guide to walk you through the steps of getting started with pgRouting. In this guide we will cover:

• How to create a database to use for our project

• How to load some data

• How to build a topology

• How to check your graph for errors

• How to compute a route

• How to use other tools to view your graph and route

• How to create a web app

How to create a database

The first thing we need to do is create a database and load pgrouting in the database. Typically you will create a
database for each project. Once you have a database to work in, your can load your data and build your application
in that database. This makes it easy to move your project later if you want to to say a production server.

For Postgresql 9.1 and later versions

createdb mydatabase
psql mydatabase -c "create extension postgis"
psql mydatabase -c "create extension pgrouting"

How to load some data

How you load your data will depend in what form it comes it. There are various OpenSource tools that can help
you, like:

osm2pgrouting-alpha

• this is a tool for loading OSM data into postgresql with pgRouting requirements

shp2pgsql

• this is the postgresql shapefile loader

ogr2ogr

• this is a vector data conversion utility

osm2pgsql

• this is a tool for loading OSM data into postgresql

So these tools and probably others will allow you to read vector data so that you may then load that data into your
database as a table of some kind. At this point you need to know a little about your data structure and content.
One easy way to browse your new data table is with pgAdmin3 or phpPgAdmin.

How to build a topology

Next we need to build a topology for our street data. What this means is that for any given edge in your street
data the ends of that edge will be connected to a unique node and to other edges that are also connected to that
same unique node. Once all the edges are connected to nodes we have a graph that can be used for routing with
pgrouting. We provide a tool that will help with this:

Note: this step is not needed if data is loaded with osm2pgrouting-alpha

14 Chapter 2. Tutorial

pgRouting Manual, Release 2.3.2 (master)

select pgr_createTopology('myroads', 0.000001);

See pgr_createTopology for more information.

How to check your graph for errors

There are lots of possible sources for errors in a graph. The data that you started with may not have been designed
with routing in mind. A graph has some very specific requirments. One is that it is NODED, this means that except
for some very specific use cases, each road segment starts and ends at a node and that in general is does not cross
another road segment that it should be connected to.

There can be other errors like the direction of a one-way street being entered in the wrong direction. We do not
have tools to search for all possible errors but we have some basic tools that might help.

select pgr_analyzegraph('myroads', 0.000001);
select pgr_analyzeoneway('myroads', s_in_rules, s_out_rules,

t_in_rules, t_out_rules
direction)

See Graph Analytics for more information.

If your data needs to be NODED, we have a tool that can help for that also.

See pgr_nodeNetwork for more information.

How to compute a route

Once you have all the preparation work done above, computing a route is fairly easy. We have a lot of different
algorithms that can work with your prepared road network. The general form of a route query is:

select pgr_<algorithm>(<SQL for edges>, start, end, <additional options>)

As you can see this is fairly straight forward and you can look and the specific algorithms for the details of the
signatures and how to use them. These results have information like edge id and/or the node id along with the cost
or geometry for the step in the path from start to end. Using the ids you can join these result back to your edge
table to get more information about each step in the path.

Indices and tables

• genindex

• search

2.1.2 Routing Topology

Author Stephen Woodbridge <woodbri@swoodbridge.com2>

Copyright Stephen Woodbridge. The source code is released under the MIT-X license.

Overview

Typically when GIS files are loaded into the data database for use with pgRouting they do not have topology
information associated with them. To create a useful topology the data needs to be “noded”. This means that
where two or more roads form an intersection there it needs to be a node at the intersection and all the road
segments need to be broken at the intersection, assuming that you can navigate from any of these segments to any
other segment via that intersection.

2woodbri@swoodbridge.com

2.1. Tutorial 15

mailto:woodbri@swoodbridge.com

pgRouting Manual, Release 2.3.2 (master)

You can use the graph analysis functions to help you see where you might have topology problems in your data.
If you need to node your data, we also have a function pgr_nodeNetwork() that might work for you. This function
splits ALL crossing segments and nodes them. There are some cases where this might NOT be the right thing to
do.

For example, when you have an overpass and underpass intersection, you do not want these noded, but pgr_-
nodeNetwork does not know that is the case and will node them which is not good because then the router will be
able to turn off the overpass onto the underpass like it was a flat 2D intersection. To deal with this problem some
data sets use z-levels at these types of intersections and other data might not node these intersection which would
be ok.

For those cases where topology needs to be added the following functions may be useful. One way to prep the data
for pgRouting is to add the following columns to your table and then populate them as appropriate. This example
makes a lot of assumption like that you original data tables already has certain columns in it like one_way, fcc,
and possibly others and that they contain specific data values. This is only to give you an idea of what you can do
with your data.

ALTER TABLE edge_table
ADD COLUMN source integer,
ADD COLUMN target integer,
ADD COLUMN cost_len double precision,
ADD COLUMN cost_time double precision,
ADD COLUMN rcost_len double precision,
ADD COLUMN rcost_time double precision,
ADD COLUMN x1 double precision,
ADD COLUMN y1 double precision,
ADD COLUMN x2 double precision,
ADD COLUMN y2 double precision,
ADD COLUMN to_cost double precision,
ADD COLUMN rule text,
ADD COLUMN isolated integer;

SELECT pgr_createTopology('edge_table', 0.000001, 'the_geom', 'id');

The function pgr_createTopology() will create the vertices_tmp table and populate the source and target
columns. The following example populated the remaining columns. In this example, the fcc column contains
feature class code and the CASE statements converts it to an average speed.

UPDATE edge_table SET x1 = st_x(st_startpoint(the_geom)),
y1 = st_y(st_startpoint(the_geom)),
x2 = st_x(st_endpoint(the_geom)),
y2 = st_y(st_endpoint(the_geom)),

cost_len = st_length_spheroid(the_geom, 'SPHEROID["WGS84",6378137,298.25728]'),
rcost_len = st_length_spheroid(the_geom, 'SPHEROID["WGS84",6378137,298.25728]'),
len_km = st_length_spheroid(the_geom, 'SPHEROID["WGS84",6378137,298.25728]')/1000.0,
len_miles = st_length_spheroid(the_geom, 'SPHEROID["WGS84",6378137,298.25728]')

/ 1000.0 * 0.6213712,
speed_mph = CASE WHEN fcc='A10' THEN 65

WHEN fcc='A15' THEN 65
WHEN fcc='A20' THEN 55
WHEN fcc='A25' THEN 55
WHEN fcc='A30' THEN 45
WHEN fcc='A35' THEN 45
WHEN fcc='A40' THEN 35
WHEN fcc='A45' THEN 35
WHEN fcc='A50' THEN 25
WHEN fcc='A60' THEN 25
WHEN fcc='A61' THEN 25
WHEN fcc='A62' THEN 25
WHEN fcc='A64' THEN 25
WHEN fcc='A70' THEN 15
WHEN fcc='A69' THEN 10
ELSE null END,

16 Chapter 2. Tutorial

pgRouting Manual, Release 2.3.2 (master)

speed_kmh = CASE WHEN fcc='A10' THEN 104
WHEN fcc='A15' THEN 104
WHEN fcc='A20' THEN 88
WHEN fcc='A25' THEN 88
WHEN fcc='A30' THEN 72
WHEN fcc='A35' THEN 72
WHEN fcc='A40' THEN 56
WHEN fcc='A45' THEN 56
WHEN fcc='A50' THEN 40
WHEN fcc='A60' THEN 50
WHEN fcc='A61' THEN 40
WHEN fcc='A62' THEN 40
WHEN fcc='A64' THEN 40
WHEN fcc='A70' THEN 25
WHEN fcc='A69' THEN 15
ELSE null END;

-- UPDATE the cost information based on oneway streets

UPDATE edge_table SET
cost_time = CASE

WHEN one_way='TF' THEN 10000.0
ELSE cost_len/1000.0/speed_kmh::numeric*3600.0
END,

rcost_time = CASE
WHEN one_way='FT' THEN 10000.0
ELSE cost_len/1000.0/speed_kmh::numeric*3600.0
END;

-- clean up the database because we have updated a lot of records

VACUUM ANALYZE VERBOSE edge_table;

Now your database should be ready to use any (most?) of the pgRouting algorithms.

See Also

• pgr_createTopology

• pgr_nodeNetwork

• pgr_pointToId - Deprecated Function

2.1.3 Graph Analytics

Author Stephen Woodbridge <woodbri@swoodbridge.com3>

Copyright Stephen Woodbridge. The source code is released under the MIT-X license.

Overview

It is common to find problems with graphs that have not been constructed fully noded or in graphs with z-levels at
intersection that have been entered incorrectly. An other problem is one way streets that have been entered in the
wrong direction. We can not detect errors with respect to “ground” truth, but we can look for inconsistencies and
some anomalies in a graph and report them for additional inspections.

We do not current have any visualization tools for these problems, but I have used mapserver to render the graph
and highlight potential problem areas. Someone familiar with graphviz might contribute tools for generating
images with that.

3woodbri@swoodbridge.com

2.1. Tutorial 17

mailto:woodbri@swoodbridge.com

pgRouting Manual, Release 2.3.2 (master)

Analyze a Graph

With pgr_analyzeGraph the graph can be checked for errors. For example for table “mytab” that has “mytab_-
vertices_pgr” as the vertices table:

SELECT pgr_analyzeGraph('mytab', 0.000002);
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 158
NOTICE: Dead ends: 20028
NOTICE: Potential gaps found near dead ends: 527
NOTICE: Intersections detected: 2560
NOTICE: Ring geometries: 0
pgr_analyzeGraph

OK
(1 row)

In the vertices table “mytab_vertices_pgr”:

• Deadends are identified by cnt=1

• Potencial gap problems are identified with chk=1.

SELECT count(*) as deadends FROM mytab_vertices_pgr WHERE cnt = 1;
deadends

20028
(1 row)

SELECT count(*) as gaps FROM mytab_vertices_pgr WHERE chk = 1;
gaps

527
(1 row)

For isolated road segments, for example, a segment where both ends are deadends. you can find these with the
following query:

SELECT *
FROM mytab a, mytab_vertices_pgr b, mytab_vertices_pgr c
WHERE a.source=b.id AND b.cnt=1 AND a.target=c.id AND c.cnt=1;

If you want to visualize these on a graphic image, then you can use something like mapserver to render the edges
and the vertices and style based on cnt or if they are isolated, etc. You can also do this with a tool like graphviz,
or geoserver or other similar tools.

Analyze One Way Streets

pgr_analyzeOneway analyzes one way streets in a graph and identifies any flipped segments. Basically if you
count the edges coming into a node and the edges exiting a node the number has to be greater than one.

This query will add two columns to the vertices_tmp table ein int and eout int and populate it with the ap-
propriate counts. After running this on a graph you can identify nodes with potential problems with the following
query.

The rules are defined as an array of text strings that if match the col value would be counted as true for the source
or target in or out condition.

18 Chapter 2. Tutorial

pgRouting Manual, Release 2.3.2 (master)

Example

Lets assume we have a table “st” of edges and a column “one_way” that might have values like:

• ‘FT’ - oneway from the source to the target node.

• ‘TF’ - oneway from the target to the source node.

• ‘B’ - two way street.

• ‘’ - empty field, assume twoway.

• <NULL> - NULL field, use two_way_if_null flag.

Then we could form the following query to analyze the oneway streets for errors.

SELECT pgr_analyzeOneway('mytab',
ARRAY['', 'B', 'TF'],
ARRAY['', 'B', 'FT'],
ARRAY['', 'B', 'FT'],
ARRAY['', 'B', 'TF'],
);

-- now we can see the problem nodes
SELECT * FROM mytab_vertices_pgr WHERE ein=0 OR eout=0;

-- and the problem edges connected to those nodes
SELECT gid FROM mytab a, mytab_vertices_pgr b WHERE a.source=b.id AND ein=0 OR eout=0
UNION
SELECT gid FROM mytab a, mytab_vertices_pgr b WHERE a.target=b.id AND ein=0 OR eout=0;

Typically these problems are generated by a break in the network, the one way direction set wrong, maybe an error
related to z-levels or a network that is not properly noded.

The above tools do not detect all network issues, but they will identify some common problems. There are other
problems that are hard to detect because they are more global in nature like multiple disconnected networks. Think
of an island with a road network that is not connected to the mainland network because the bridge or ferry routes
are missing.

See Also

• pgr_analyzeGraph

• pgr_analyzeOneway

• pgr_nodeNetwork

2.1.4 Dictionary of columns & Custom Query

path a sequence of vertices/edges from A to B.

route a sequence of paths.

ANY-INTEGER Any of the following types: SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL Any of the following types: SMALLINT, INTEGER, BIGINT, REAL, FLOAT

2.1. Tutorial 19

pgRouting Manual, Release 2.3.2 (master)

2.1.5 Custom Queries

Edges queries

Columns of the edges_sql queries

Depending on the function used the following columns are expected

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end

point vertex of the edge.
target ANY-INTEGER Identifier of the second end

point vertex of the edge.
cost ANY-NUMERICAL

Weight of the edge (source, target)

• When neg-
ative: edge
(source, tar-
get) does not
exist, therefore
it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1
Weight of the edge (target, source),

• When nega-
tive: edge (tar-
get, source)
does not exist,
therefore it’s
not part of the
graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the edges_sql query

edges_sql an SQL query, which should return a set of rows with the following columns:

id ANY-INTEGER identifier of the edge.

source ANY-INTEGER identifier of the first end point vertex of the edge.

target ANY-INTEGER identifier of the second end pont vertex of the edge.

cost ANY-NUMERICAL weight of the edge (source, target), if negative: edge (source,
target) does not exist, therefore it’s not part of the graph.

reverse_cost ANY-NUMERICAL (optional) weight of the edge (target, source), if
negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

ANY-INTEGER smallint, int, bigint

ANY-NUMERICAL smallint, int, bigint, real, float

20 Chapter 2. Tutorial

pgRouting Manual, Release 2.3.2 (master)

Description of the parameters of the signatures

edges_sql TEXT SQL query as described above.

start_vid BIGINT identifier of the starting vertex of the path.

start_vids array[ANY-INTEGER] array of identifiers of starting vertices.

end_vid BIGINT identifier of the ending vertex of the path.

end_vids array[ANY-INTEGER] array of identifiers of ending vertices.

directed boolean (optional). When false the graph is considered as Undirected. Default is
true which considers the graph as Directed.

Description of the return values

Returns set of (seq [, start_vid] [, end_vid] , node, edge, cost, agg_cost)

seq INTEGER is a sequential value starting from 1.

route_seq INTEGER relative position in the route. Has value 1 for the beginning of a route.

route_id INTEGER id of the route.

path_seq INTEGER relative position in the path. Has value 1 for the beginning of a path.

path_id INTEGER id of the path.

start_vid BIGINT id of the starting vertex. Used when multiple starting vetrices are in the query.

end_vid BIGINT id of the ending vertex. Used when multiple ending vertices are in the query.

node BIGINT id of the node in the path from start_vid to end_v.

edge BIGINT id of the edge used to go from node to the next node in the path sequence. -1 for the
last node of the path.

cost FLOAT cost to traverse from node using edge to the next node in the path sequence.

agg_cost FLOAT total cost from start_vid to node.

Descriptions for version 2.0 signatures

In general, the routing algorithms need an SQL query that contain one or more of the following required columns
with the preferred type:

id int4

source int4

target int4

cost float8

reverse_cost float8

x float8

y float8

x1 float8

y1 float8

x2 float8

y2 float8

2.1. Tutorial 21

pgRouting Manual, Release 2.3.2 (master)

SELECT source, target, cost FROM edge_table;
SELECT id, source, target, cost FROM edge_table;
SELECT id, source, target, cost, x1, y1, x2, y2 ,reverse_cost FROM edge_table

When the edge table has a different name to represent the required columns:

SELECT src as source, target, cost FROM othertable;
SELECT gid as id, src as source, target, cost FROM othertable;
SELECT gid as id, src as source, target, cost, fromX as x1, fromY as y1, toX as x2, toY as y2 ,Rcost as reverse_cost

FROM othertable;

The topology functions use the same names for id, source and target columns of the edge table, The fowl-
lowing parameters have as default value:

id int4 Default id

source int4 Default source

target int4 Default target

the_geom text Default the_geom

oneway text Default oneway

rows_where text Default true to indicate all rows (this is not a column)

The following parameters do not have a default value and when used they have to be inserted in strict order:

edge_table text

tolerance float8

s_in_rules text[]

s_out_rules text[]

t_in_rules text[]

t_out_rules text[]

When the columns required have the default names this can be used (pgr_func is to represent a topology function)

pgr_func('edge_table') -- when tolerance is not required
pgr_func('edge_table',0.001) -- when tolerance is required
-- s_in_rule, s_out_rule, st_in_rules, t_out_rules are required
SELECT pgr_analyzeOneway('edge_table', ARRAY['', 'B', 'TF'], ARRAY['', 'B', 'FT'],

ARRAY['', 'B', 'FT'], ARRAY['', 'B', 'TF'])

When the columns required do not have the default names its strongly recommended to use the named notation.

pgr_func('othertable', id:='gid',source:='src',the_geom:='mygeom')
pgr_func('othertable',0.001,the_geom:='mygeom',id:='gid',source:='src')
SELECT pgr_analyzeOneway('othertable', ARRAY['', 'B', 'TF'], ARRAY['', 'B', 'FT'],

ARRAY['', 'B', 'FT'], ARRAY['', 'B', 'TF']
source:='src',oneway:='dir')

2.1.6 Performance Tips

For the Routing functions:

Note: To get faster results bound your queries to the area of interest of routing to have, for example, no more
than one million rows.

22 Chapter 2. Tutorial

pgRouting Manual, Release 2.3.2 (master)

For the topology functions:

When “you know” that you are going to remove a set of edges from the edges table, and without those edges you
are going to use a routing function you can do the following:

Analize the new topology based on the actual topology:

pgr_analyzegraph('edge_table',rows_where:='id < 17');

Or create a new topology if the change is permanent:

pgr_createTopology('edge_table',rows_where:='id < 17');
pgr_analyzegraph('edge_table',rows_where:='id < 17');

Use an SQL that “removes” the edges in the routing function

SELECT id, source, target from edge_table WHERE id < 17

When “you know” that the route will not go out of a particular area, to speed up the process you can use a more
complex SQL query like

SELECT id, source, target from edge_table WHERE
id < 17 and
the_geom && (select st_buffer(the_geom,1) as myarea FROM edge_table where id=5)

Note that the same condition id < 17 is used in all cases.

2.2 User’s Recipes List

2.2.1 Comparing topology of a unnoded network with a noded network

Author pgRouting team.

Licence Open Source

This recipe uses the Sample Data network.

The purpose of this recipe is to compare a not nodded network with a nodded network.

SELECT pgr_createTopology('edge_table', 0.001);
SELECT pgr_analyzegraph('edge_table', 0.001);
SELECT pgr_nodeNetwork('edge_table', 0.001);
SELECT pgr_createTopology('edge_table_noded', 0.001);
SELECT pgr_analyzegraph('edge_table_noded', 0.001);

2.2.2 Handling parallels after getting a path (pgr_ksp focus)

Author pgRouting team.

Licence Open Source

2.2. User’s Recipes List 23

pgRouting Manual, Release 2.3.2 (master)

The graph

Data

drop table if exists parallel;
CREATE TABLE parallel (

id serial,
source integer,
target integer,
cost double precision,
reverse_cost double precision,
x1 double precision,
y1 double precision,
x2 double precision,
y2 double precision,
the_geom geometry

);

24 Chapter 2. Tutorial

pgRouting Manual, Release 2.3.2 (master)

INSERT INTO parallel (x1,y1,x2,y2)
VALUES (1,0,1,1),(1,1,1,3),(1,1,1,3),(1,1,1,3),(1,3,1,4),(1,1,-1,1),(-1,1,-1,3),(-1,3,1,3);

UPDATE parallel SET the_geom = ST_makeline(ST_point(x1,y1),ST_point(x2,y2));
UPDATE parallel SET the_geom = ST_makeline(ARRAY[ST_point(1,1),ST_point(0,2),ST_point(1,3)]) WHERE id = 3;
UPDATE parallel SET the_geom = ST_makeline(ARRAY[ST_point(1,1),ST_point(2,1),ST_point(2,3),ST_point(1,3)])

WHERE id = 4;
UPDATE parallel SET cost = ST_length(the_geom), reverse_cost = ST_length(the_geom);
SELECT pgr_createTopology('parallel',0.001);

pgr_ksp results

We ignore the costs because we want all the parallels

SELECT seq, path_id AS route, node, edge INTO routes
from pgr_ksp('select id, source, target, cost, reverse_cost from parallel',
1, 4, 3);

select route, node, edge from routes;
route | node | edge

-------+------+------
1 | 1 | 1
1 | 2 | 2
1 | 3 | 5
1 | 4 | -1
2 | 1 | 1
2 | 2 | 6
2 | 5 | 7
2 | 6 | 8
2 | 3 | 5
2 | 4 | -1

(10 rows)

We need an aggregate function:

CREATE AGGREGATE array_accum (anyelement)
(

sfunc = array_append,
stype = anyarray,
initcond = '{}'

);

Now lets generate a table with the parallel edges.

select distinct seq,route,source,target, array_accum(id) as edges into paths
from (select seq, route, source, target

from parallel, routes where id = edge) as r
join parallel using (source, target)

group by seq,route,source,target order by seq;

select route, source, targets, edges from paths;
route | source | target | edges
-------+--------+--------+---------

1 | 1 | 2 | {1}
2 | 1 | 2 | {1}
2 | 2 | 5 | {6}
1 | 2 | 3 | {2,3,4}
2 | 5 | 6 | {7}
1 | 3 | 4 | {5}

2.2. User’s Recipes List 25

pgRouting Manual, Release 2.3.2 (master)

2 | 6 | 3 | {8}
2 | 3 | 4 | {5}

(8 rows)

Some more aggregate functions

To generate a table with all the combinations for parallel routes, we need some more aggregates

create or replace function multiply(integer, integer)
returns integer as
$$

select $1 * $2;
$$
language sql stable;

create aggregate prod(integer)
(

sfunc = multiply,
stype = integer,
initcond = 1

);

And a function that “Expands” the table

CREATE OR REPLACE function expand_parallel_edge_paths(tab text)
returns TABLE (

seq INTEGER,
route INTEGER,
source INTEGER, target INTEGER, -- this ones are not really needed
edge INTEGER) AS

$body$
DECLARE
nroutes INTEGER;
newroutes INTEGER;
rec record;
seq2 INTEGER := 1;
rnum INTEGER := 0;

BEGIN -- get the number of distinct routes
execute 'select count(DISTINCT route) from ' || tab INTO nroutes;
FOR i IN 0..nroutes-1
LOOP

-- compute the number of new routes this route will expand into
-- this is the product of the lengths of the edges array for each route
execute 'select prod(array_length(edges, 1))-1 from '
|| quote_ident(tab) || ' where route=' || i INTO newroutes;
-- now we generate the number of new routes for this route
-- by repeatedly listing the route and swapping out the parallel edges
FOR j IN 0..newroutes
LOOP

-- query the specific route
FOR rec IN execute 'select * from ' || quote_ident(tab) ||' where route=' || i

|| ' order by seq'
LOOP

seq := seq2;
route := rnum;
source := rec.source;
target := rec.target;
-- using module arithmetic iterate through the various edge choices
edge := rec.edges[(j % (array_length(rec.edges, 1)))+1];

26 Chapter 2. Tutorial

pgRouting Manual, Release 2.3.2 (master)

-- return a new record
RETURN next;
seq2 := seq2 + 1; -- increment the record count

END LOOP;
seq := seq2;
route := rnum;
source := rec.target;
target := -1;
edge := -1;
RETURN next; -- Insert the ending record of the route
seq2 := seq2 + 1;

rnum := rnum + 1; -- increment the route count
END LOOP;

END LOOP;
END;
$body$
language plpgsql volatile strict cost 100 rows 100;

Test it

select * from expand_parallel_edge_paths('paths');
seq | route | source | target | edge

-----+-------+--------+--------+------
1 | 0 | 1 | 2 | 1
2 | 0 | 2 | 3 | 2
3 | 0 | 3 | 4 | 5
4 | 0 | 4 | -1 | -1
5 | 1 | 1 | 2 | 1
6 | 1 | 2 | 3 | 3
7 | 1 | 3 | 4 | 5
8 | 1 | 4 | -1 | -1
9 | 2 | 1 | 2 | 1
10 | 2 | 2 | 3 | 4
11 | 2 | 3 | 4 | 5
12 | 2 | 4 | -1 | -1
13 | 3 | 1 | 2 | 1
14 | 3 | 2 | 5 | 6
15 | 3 | 5 | 6 | 7
16 | 3 | 6 | 3 | 8
17 | 3 | 3 | 4 | 5
18 | 3 | 4 | -1 | -1

(18 rows)

No more contributions

2.3 How to contribute.

To add a recipie or a wrapper

The first steps are:

• Fork the repository

• Create a branch for your recipe or wrapper

• Create your recipe file

2.3. How to contribute. 27

pgRouting Manual, Release 2.3.2 (master)

cd doc/src/recipes/
vi myrecipe.rst
git add myrecipe.rst
include the recipe in this file
vi index.rst

To create the test file of your recipe

cd test
cp myrecipe.rst myrecipe.sql.test

make your test based on your recipe
vi myrecipe.sql.test
git add myrecipe.sql.test

create your test results file
touch myrecipe.result
git add myrecipe.result

add your test to the file
vi test.conf

Leave only the SQL code on myrecipe.sql.test by deleting lines or by commenting lines.

To get the results of your recipe

From the root directory execute:

tools/test-runner.pl -alg recipes -ignorenotice

Copy the results of your recipe and paste them in the file myrecipe.result, and remove the “> ” from the
file.

make a pull request.

git commit -a -m 'myrecipe is for this and that'
git push

From your fork in github make a pull request over develop

2.4 Developer’s Guide

This contains some basic comments about developing. More detailed information can be found on:

http://docs.pgrouting.org/doxy/2.2/index.html

2.4.1 Source Tree Layout

cmake/ cmake scripts used as part of our build system.

src/ This is the algorithm source tree. Each algorithm is to be contained in its on sub-tree with /doc, /sql, /src, and
/test sub-directories.

For example:

• src/dijkstra Main direcotry for dijkstra algorithm.

28 Chapter 2. Tutorial

http://docs.pgrouting.org/doxy/2.2/index.html

pgRouting Manual, Release 2.3.2 (master)

• src/dijkstra/doc Dijkstra’s documentation directory.

• src/dijkstra/src Dijkstra’s C and/or C++ code.

• src/dijkstra/sql Dijkstra’s sql code.

• src/dijkstra/test Dijkstra’s tests.

• src/dijkstra/test/pgtap Dijkstra’s pgTaptests.

2.4.2 Tools

tools/ Miscellaneous scripts and tools.

pre-commit

To keep version/branch/commit up to date install pelase do the following:

cp tools/pre-commit .git/hooks/pre-commit

After each commit a the file VERSION will remain. (The hash number will be one behind)

doxygen

To use doxygen:

cd tools/doxygen/
make

The code’s documentation can be found in:

build/doxy/html/index.html

cpplint

We try to follow the following guidelines for C++ coding:

https://google-styleguide.googlecode.com/svn/trunk/cppguide.html

Sample use:

python cpplint.py ../src/dijkstra/src/dijkstra_driver.h
../src/dijkstra/src/dijkstra_driver.h:34: Lines should be <= 80 characters long [whitespace/line_length] [2]
../src/dijkstra/src/dijkstra_driver.h:40: Line ends in whitespace. Consider deleting these extra spaces. [whitespace/end_of_line] [4]
Done processing ../src/dijkstra/src/dijkstra_driver.h
Total errors found: 2

• Maybe line 34 is a very complicated calculation so you can just ignore the message

• Delete whitespace at end of line is easy fix.

• Use your judgement!!!

Some files like postgres.h are system dependent so don’t include the directory.

Other tools

Tools like:

• doit

• winnie

2.4. Developer’s Guide 29

https://google-styleguide.googlecode.com/svn/trunk/cppguide.html

pgRouting Manual, Release 2.3.2 (master)

• publish_doc.sh

are very specific for the deployment of new versions, so please ask first!

2.4.3 Documentation Layout

Note: All documentation should be in reStructuredText format. See: <http://docutils.sf.net/rst.html> for intro-
ductory docs.

Documentation is distributed into the source tree. This top level “doc” directory is intended for high level docu-
mentation cover subjects like:

• Compiling and testing

• Installation

• Tutorials

• Users’ Guide front materials

• Reference Manual front materials

• etc

Since the algorithm specific documentation is contained in the source tree with the algorithm specific files, the
process of building the documentation and publishing it will need to assemble the details with the front material
as needed.

Also, to keep the “doc” directory from getting cluttered, each major book like those listed above, should be
contained in a separate directory under “doc”. Any images or other materials related to the book should also be
kept in that directory.

Testing Infrastructure

Tests are part of the tree layout:

• src/dijkstra/test Dijkstra’s tests.

– test.conf Configuration file.

– <name>.test.sql Test file

– <name>.result Results file bash

• src/dijkstra/test/pgtap Dijkstra’s pgTaptests.

– <name>.sql pgTap test file

Testing

Testing is executed from the top level of the tree layout:

tools/testers/algorithm-tester.pl
createdb -U <user> ___pgr___test___
sh ./tools/testers/pg_prove_tests.sh <user>
dropdb -U <user> ___pgr___test___

Indices and tables

• genindex

• search

30 Chapter 2. Tutorial

http://docutils.sf.net/rst.html

CHAPTER 3

Sample Data

• Sample Data that is used in the examples of this manual.

3.1 Sample Data

The documentation provides very simple example queries based on a small sample network. To be able to execute
the sample queries, run the following SQL commands to create a table with a small network data set.

Create table

CREATE TABLE edge_table (
id BIGSERIAL,
dir character varying,
source BIGINT,
target BIGINT,
cost FLOAT,
reverse_cost FLOAT,
category_id INTEGER,
reverse_category_id INTEGER,
x1 FLOAT,
y1 FLOAT,
x2 FLOAT,
y2 FLOAT,
the_geom geometry

);

Insert data

INSERT INTO edge_table (
category_id, reverse_category_id,
cost, reverse_cost,
x1, y1,
x2, y2) VALUES

(3, 1, 1, 1, 2, 0, 2, 1),
(3, 2, -1, 1, 2, 1, 3, 1),
(2, 1, -1, 1, 3, 1, 4, 1),
(2, 4, 1, 1, 2, 1, 2, 2),
(1, 4, 1, -1, 3, 1, 3, 2),
(4, 2, 1, 1, 0, 2, 1, 2),
(4, 1, 1, 1, 1, 2, 2, 2),
(2, 1, 1, 1, 2, 2, 3, 2),
(1, 3, 1, 1, 3, 2, 4, 2),
(1, 4, 1, 1, 2, 2, 2, 3),

31

pgRouting Manual, Release 2.3.2 (master)

(1, 2, 1, -1, 3, 2, 3, 3),
(2, 3, 1, -1, 2, 3, 3, 3),
(2, 4, 1, -1, 3, 3, 4, 3),
(3, 1, 1, 1, 2, 3, 2, 4),
(3, 4, 1, 1, 4, 2, 4, 3),
(3, 3, 1, 1, 4, 1, 4, 2),
(1, 2, 1, 1, 0.5, 3.5, 1.999999999999,3.5),
(4, 1, 1, 1, 3.5, 2.3, 3.5,4);

UPDATE edge_table SET the_geom = st_makeline(st_point(x1,y1),st_point(x2,y2)),
dir = CASE WHEN (cost>0 AND reverse_cost>0) THEN 'B' -- both ways

WHEN (cost>0 AND reverse_cost<0) THEN 'FT' -- direction of the LINESSTRING
WHEN (cost<0 AND reverse_cost>0) THEN 'TF' -- reverse direction of the LINESTRING
ELSE '' END; -- unknown

Topology

• Before you test a routing function use this query to create a topology (fills the source and target
columns).

SELECT pgr_createTopology('edge_table',0.001);

Points of interest

• When points outside of the graph.

• Used with the withPoints - Family of functions functions.

CREATE TABLE pointsOfInterest(
pid BIGSERIAL,
x FLOAT,
y FLOAT,
edge_id BIGINT,
side CHAR,
fraction FLOAT,
the_geom geometry,
newPoint geometry

);

INSERT INTO pointsOfInterest (x, y, edge_id, side, fraction) VALUES
(1.8, 0.4, 1, 'l', 0.4),
(4.2, 2.4, 15, 'r', 0.4),
(2.6, 3.2, 12, 'l', 0.6),
(0.3, 1.8, 6, 'r', 0.3),
(2.9, 1.8, 5, 'l', 0.8),
(2.2, 1.7, 4, 'b', 0.7);
UPDATE pointsOfInterest SET the_geom = st_makePoint(x,y);

UPDATE pointsOfInterest
SET newPoint = ST_LineInterpolatePoint(e.the_geom, fraction)
FROM edge_table AS e WHERE edge_id = id;

Restrictions

• Used with the pgr_trsp - Turn Restriction Shortest Path (TRSP) functions.

32 Chapter 3. Sample Data

pgRouting Manual, Release 2.3.2 (master)

CREATE TABLE restrictions (
rid BIGINT NOT NULL,
to_cost FLOAT,
target_id BIGINT,
from_edge BIGINT,
via_path TEXT

);

INSERT INTO restrictions (rid, to_cost, target_id, from_edge, via_path) VALUES
(1, 100, 7, 4, NULL),
(1, 100, 11, 8, NULL),
(1, 100, 10, 7, NULL),
(2, 4, 8, 3, 5),
(3, 100, 9, 16, NULL);

Categories

• Used with the Maximum Flow functions.

CREATE TABLE categories (
category_id INTEGER,
category text,
capacity BIGINT

);

INSERT INTO categories VALUES
(1, 'Category 1', 130),
(2, 'Category 2', 100),
(3, 'Category 3', 80),
(4, 'Category 4', 50);

Vertex table

• Used in some deprecated signatures or deprecated functions.

CREATE TABLE vertex_table (
id SERIAL,
x FLOAT,
y FLOAT

);
INSERT INTO vertex_table VALUES
(1,2,0), (2,2,1), (3,3,1), (4,4,1), (5,0,2), (6,1,2), (7,2,2),
(8,3,2), (9,4,2), (10,2,3), (11,3,3), (12,4,3), (13,2,4);

3.1.1 Images

• Red arrows correspond when cost > 0 in the edge table.

• Blue arrows correspond when reverse_cost > 0 in the edge table.

• Points are outside the graph.

• Click on the graph to enlarge.

Note: On all graphs,

3.1. Sample Data 33

pgRouting Manual, Release 2.3.2 (master)

Network for queries marked as directed and cost and reverse_cost columns are used:

When working with city networks, this is recommended for point of view of vehicles.

Fig. 3.1: Graph 1: Directed, with cost and reverse cost

Network for queries marked as undirected and cost and reverse_cost columns are used:

When working with city networks, this is recommended for point of view of pedestrians.

34 Chapter 3. Sample Data

pgRouting Manual, Release 2.3.2 (master)

Fig. 3.2: Graph 2: Undirected, with cost and reverse cost

Fig. 3.3: Graph 3: Directed, with cost

Fig. 3.4: Graph 4: Undirected, with cost

3.1. Sample Data 35

pgRouting Manual, Release 2.3.2 (master)

Network for queries marked as directed and only cost column is used:

Network for queries marked as undirected and only cost column is used:

Pick & Deliver Data

DROP TABLE IF EXISTS customer CASCADE;
CREATE TABLE customer (

id INTEGER NOT NULL PRIMARY KEY,
x INTEGER,
y INTEGER,
demand INTEGER,
openTime INTEGER,
closeTime INTEGER,
serviceTime INTEGER,
pindex INTEGER,
dindex INTEGER
);

copy customer (id, x, y, demand, openTime, closeTime, serviceTime, pindex, dindex) from stdin;
0 40 50 0 0 1236 0 0 0
1 45 68 -10 912 967 90 11 0
2 45 70 -20 825 870 90 6 0
3 42 66 10 65 146 90 0 75
4 42 68 -10 727 782 90 9 0
5 42 65 10 15 67 90 0 7
6 40 69 20 621 702 90 0 2
7 40 66 -10 170 225 90 5 0
8 38 68 20 255 324 90 0 10
9 38 70 10 534 605 90 0 4
10 35 66 -20 357 410 90 8 0
11 35 69 10 448 505 90 0 1
12 25 85 -20 652 721 90 18 0
13 22 75 30 30 92 90 0 17
14 22 85 -40 567 620 90 16 0
15 20 80 -10 384 429 90 19 0
16 20 85 40 475 528 90 0 14
17 18 75 -30 99 148 90 13 0
18 15 75 20 179 254 90 0 12
19 15 80 10 278 345 90 0 15
20 30 50 10 10 73 90 0 24
21 30 52 -10 914 965 90 30 0
22 28 52 -20 812 883 90 28 0
23 28 55 10 732 777 0 0 103
24 25 50 -10 65 144 90 20 0
25 25 52 40 169 224 90 0 27
26 25 55 -10 622 701 90 29 0
27 23 52 -40 261 316 90 25 0
28 23 55 20 546 593 90 0 22
29 20 50 10 358 405 90 0 26
30 20 55 10 449 504 90 0 21
31 10 35 -30 200 237 90 32 0
32 10 40 30 31 100 90 0 31
33 8 40 40 87 158 90 0 37
34 8 45 -30 751 816 90 38 0
35 5 35 10 283 344 90 0 39
36 5 45 10 665 716 0 0 105
37 2 40 -40 383 434 90 33 0
38 0 40 30 479 522 90 0 34
39 0 45 -10 567 624 90 35 0
40 35 30 -20 264 321 90 42 0
41 35 32 -10 166 235 90 43 0
42 33 32 20 68 149 90 0 40

36 Chapter 3. Sample Data

pgRouting Manual, Release 2.3.2 (master)

43 33 35 10 16 80 90 0 41
44 32 30 10 359 412 90 0 46
45 30 30 10 541 600 90 0 48
46 30 32 -10 448 509 90 44 0
47 30 35 -10 1054 1127 90 49 0
48 28 30 -10 632 693 90 45 0
49 28 35 10 1001 1066 90 0 47
50 26 32 10 815 880 90 0 52
51 25 30 10 725 786 0 0 101
52 25 35 -10 912 969 90 50 0
53 44 5 20 286 347 90 0 58
54 42 10 40 186 257 90 0 60
55 42 15 -40 95 158 90 57 0
56 40 5 30 385 436 90 0 59
57 40 15 40 35 87 90 0 55
58 38 5 -20 471 534 90 53 0
59 38 15 -30 651 740 90 56 0
60 35 5 -40 562 629 90 54 0
61 50 30 -10 531 610 90 67 0
62 50 35 20 262 317 90 0 68
63 50 40 50 171 218 90 0 74
64 48 30 10 632 693 0 0 102
65 48 40 10 76 129 90 0 72
66 47 35 10 826 875 90 0 69
67 47 40 10 12 77 90 0 61
68 45 30 -20 734 777 90 62 0
69 45 35 -10 916 969 90 66 0
70 95 30 -30 387 456 90 81 0
71 95 35 20 293 360 90 0 77
72 53 30 -10 450 505 90 65 0
73 92 30 -10 478 551 90 76 0
74 53 35 -50 353 412 90 63 0
75 45 65 -10 997 1068 90 3 0
76 90 35 10 203 260 90 0 73
77 88 30 -20 574 643 90 71 0
78 88 35 20 109 170 0 0 104
79 87 30 10 668 731 90 0 80
80 85 25 -10 769 820 90 79 0
81 85 35 30 47 124 90 0 70
82 75 55 20 369 420 90 0 85
83 72 55 -20 265 338 90 87 0
84 70 58 20 458 523 90 0 89
85 68 60 -20 555 612 90 82 0
86 66 55 10 173 238 90 0 91
87 65 55 20 85 144 90 0 83
88 65 60 -10 645 708 90 90 0
89 63 58 -20 737 802 90 84 0
90 60 55 10 20 84 90 0 88
91 60 60 -10 836 889 90 86 0
92 67 85 20 368 441 90 0 93
93 65 85 -20 475 518 90 92 0
94 65 82 -10 285 336 90 96 0
95 62 80 -20 196 239 90 98 0
96 60 80 10 95 156 90 0 94
97 60 85 30 561 622 0 0 106
98 58 75 20 30 84 90 0 95
99 55 80 -20 743 820 90 100 0
100 55 85 20 647 726 90 0 99
101 25 30 -10 725 786 90 51 0
102 48 30 -10 632 693 90 64 0
103 28 55 -10 732 777 90 23 0
104 88 35 -20 109 170 90 78 0
105 5 45 -10 665 716 90 36 0

3.1. Sample Data 37

pgRouting Manual, Release 2.3.2 (master)

106 60 85 -30 561 622 90 97 0

38 Chapter 3. Sample Data

CHAPTER 4

Functions

4.1 Version

pgr_version - to get pgRouting’s version information.

4.1.1 pgr_version

Name

pgr_version — Query for pgRouting version information.

Synopsis

Returns a table with pgRouting version information.

table() pgr_version();

Description

Returns a table with:

version varchar pgRouting version

tag varchar Git tag of pgRouting build

hash varchar Git hash of pgRouting build

branch varchar Git branch of pgRouting build

boost varchar Boost version

History

• New in version 2.0.0

Examples

• Query for full version string

39

pgRouting Manual, Release 2.3.2 (master)

SELECT pgr_version();

pgr_version

(2.2.0,pgrouting-2.2.0,9fd33c5,master,1.54.0)

(1 row)

• Query for version and boost attribute

SELECT version, boost FROM pgr_version();

version | boost
-----------+--------
2.2.0-dev | 1.49.0

(1 row)

See Also

• pgr_versionless - Deprecated Function to compare two version numbers

4.2 Data Types

pgRouting Data Types

• pgr_costResult[] - A set of records to describe a path result with cost attribute.

• pgr_costResult3[] - A set of records to describe a path result with cost attribute.

• pgr_geomResult - A set of records to describe a path result with geometry attribute.

4.2.1 pgRouting Data Types

The following are commonly used data types for some of the pgRouting functions.

• pgr_costResult[] - A set of records to describe a path result with cost attribute.

• pgr_costResult3[] - A set of records to describe a path result with cost attribute.

• pgr_geomResult - A set of records to describe a path result with geometry attribute.

pgr_costResult[]

Name

pgr_costResult[] — A set of records to describe a path result with cost attribute.

Description

CREATE TYPE pgr_costResult AS
(

seq integer,
id1 integer,
id2 integer,
cost float8

);

seq sequential ID indicating the path order

40 Chapter 4. Functions

pgRouting Manual, Release 2.3.2 (master)

id1 generic name, to be specified by the function, typically the node id

id2 generic name, to be specified by the function, typically the edge id

cost cost attribute

pgr_costResult3[] - Multiple Path Results with Cost

Name

pgr_costResult3[] — A set of records to describe a path result with cost attribute.

Description

CREATE TYPE pgr_costResult3 AS
(

seq integer,
id1 integer,
id2 integer,
id3 integer,
cost float8

);

seq sequential ID indicating the path order

id1 generic name, to be specified by the function, typically the path id

id2 generic name, to be specified by the function, typically the node id

id3 generic name, to be specified by the function, typically the edge id

cost cost attribute

History

• New in version 2.0.0

• Replaces path_result

See Also

• Introduction

pgr_geomResult[]

Name

pgr_geomResult[] — A set of records to describe a path result with geometry attribute.

Description

CREATE TYPE pgr_geomResult AS
(

seq integer,
id1 integer,
id2 integer,

4.2. Data Types 41

pgRouting Manual, Release 2.3.2 (master)

geom geometry
);

seq sequential ID indicating the path order

id1 generic name, to be specified by the function

id2 generic name, to be specified by the function

geom geometry attribute

History

• New in version 2.0.0

• Replaces geoms

See Also

• Introduction

42 Chapter 4. Functions

CHAPTER 5

Topology functions

Topology Functions

• pgr_createTopology - to create a topology based on the geometry.

• pgr_createVerticesTable - to reconstruct the vertices table based on the source and target information.

• pgr_analyzeGraph - to analyze the edges and vertices of the edge table.

• pgr_analyzeOneway - to analyze directionality of the edges.

• pgr_nodeNetwork -to create nodes to a not noded edge table.

5.1 Topology Functions

The pgRouting’s topology of a network, represented with an edge table with source and target attributes and a
vertices table associated with it. Depending on the algorithm, you can create a topology or just reconstruct the
vertices table, You can analyze the topology, We also provide a function to node an unoded network.

• pgr_createTopology - to create a topology based on the geometry.

• pgr_createVerticesTable - to reconstruct the vertices table based on the source and target information.

• pgr_analyzeGraph - to analyze the edges and vertices of the edge table.

• pgr_analyzeOneway - to analyze directionality of the edges.

• pgr_nodeNetwork -to create nodes to a not noded edge table.

5.1.1 pgr_createTopology

Name

pgr_createTopology — Builds a network topology based on the geometry information.

Synopsis

The function returns:

• OK after the network topology has been built and the vertices table created.

• FAIL when the network topology was not built due to an error.

varchar pgr_createTopology(text edge_table, double precision tolerance,
text the_geom:='the_geom', text id:='id',
text source:='source',text target:='target',
text rows_where:='true', boolean clean:=false)

43

pgRouting Manual, Release 2.3.2 (master)

Description

Parameters

The topology creation function accepts the following parameters:

edge_table text Network table name. (may contain the schema name AS well)

tolerance float8 Snapping tolerance of disconnected edges. (in projection unit)

the_geom text Geometry column name of the network table. Default value is the_geom.

id text Primary key column name of the network table. Default value is id.

source text Source column name of the network table. Default value is source.

target text Target column name of the network table. Default value is target.

rows_where text Condition to SELECT a subset or rows. Default value is true to indicate all
rows that where source or target have a null value, otherwise the condition is used.

clean boolean Clean any previous topology. Default value is false.

Warning: The edge_table will be affected
• The source column values will change.
• The target column values will change.
• An index will be created, if it doesn’t exists, to speed up the process to the following columns:

– id
– the_geom
– source
– target

The function returns:

• OK after the network topology has been built.

– Creates a vertices table: <edge_table>_vertices_pgr.

– Fills id and the_geom columns of the vertices table.

– Fills the source and target columns of the edge table referencing the id of the vertices table.

• FAIL when the network topology was not built due to an error:

– A required column of the Network table is not found or is not of the appropriate type.

– The condition is not well formed.

– The names of source , target or id are the same.

– The SRID of the geometry could not be determined.

The Vertices Table

The vertices table is a requirement of the pgr_analyzeGraph and the pgr_analyzeOneway functions.

The structure of the vertices table is:

id bigint Identifier of the vertex.

cnt integer Number of vertices in the edge_table that reference this vertex. See pgr_analyze-
Graph.

chk integer Indicator that the vertex might have a problem. See pgr_analyzeGraph.

ein integer Number of vertices in the edge_table that reference this vertex AS incoming. See
pgr_analyzeOneway.

44 Chapter 5. Topology functions

pgRouting Manual, Release 2.3.2 (master)

eout integer Number of vertices in the edge_table that reference this vertex AS outgoing. See
pgr_analyzeOneway.

the_geom geometry Point geometry of the vertex.

History

• Renamed in version 2.0.0

Usage when the edge table’s columns MATCH the default values:

The simplest way to use pgr_createTopology is:

SELECT pgr_createTopology('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', rows_where := 'true', clean := f)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 18 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --
pgr_createtopology

OK

(1 row)

When the arguments are given in the order described in the parameters:

We get the same result AS the simplest way to use the function.

SELECT pgr_createTopology('edge_table', 0.001,
'the_geom', 'id', 'source', 'target');

NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', rows_where := 'true', clean := f)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 18 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --
pgr_createtopology

OK

(1 row)

5.1. Topology Functions 45

pgRouting Manual, Release 2.3.2 (master)

Warning:
An error would occur when the arguments are not given in the appropriate order:
In this example, the column id of the table ege_table is passed to the function as the geometry column,
and the geometry column the_geom is passed to the function as the id column.

SELECT pgr_createTopology('edge_table', 0.001,
'id', 'the_geom');

NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'id', 'the_geom', 'source', 'target', rows_where := 'true', clean := f)
NOTICE: Performing checks, please wait
NOTICE: ----> PGR ERROR in pgr_createTopology: Wrong type of Column id:the_geom
NOTICE: Unexpected error raise_exception
pgr_createtopology

FAIL

(1 row)

When using the named notation

Parameters defined with a default value can be omitted, as long as the value matches the default And The order of
the parameters would not matter.

SELECT pgr_createTopology('edge_table', 0.001,
the_geom:='the_geom', id:='id', source:='source', target:='target');

pgr_createtopology

OK

(1 row)

SELECT pgr_createTopology('edge_table', 0.001,
source:='source', id:='id', target:='target', the_geom:='the_geom');

pgr_createtopology

OK

(1 row)

SELECT pgr_createTopology('edge_table', 0.001, source:='source');
pgr_createtopology

OK

(1 row)

Selecting rows using rows_where parameter

Selecting rows based on the id.

SELECT pgr_createTopology('edge_table', 0.001, rows_where:='id < 10');
pgr_createtopology

OK

(1 row)

Selecting the rows where the geometry is near the geometry of row with id = 5.

46 Chapter 5. Topology functions

pgRouting Manual, Release 2.3.2 (master)

SELECT pgr_createTopology('edge_table', 0.001,
rows_where:='the_geom && (SELECT st_buffer(the_geom, 0.05) FROM edge_table WHERE id=5)');

pgr_createtopology

OK

(1 row)

Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5, 2.5) AS other_geom);
SELECT 1
SELECT pgr_createTopology('edge_table', 0.001,

rows_where:='the_geom && (SELECT st_buffer(other_geom, 1) FROM otherTable WHERE gid=100)');
pgr_createtopology

OK

(1 row)

Usage when the edge table’s columns DO NOT MATCH the default values:

For the following table

CREATE TABLE mytable AS (SELECT id AS gid, the_geom AS mygeom, source AS src , target AS tgt FROM edge_table) ;
SELECT 18

Using positional notation:

The arguments need to be given in the order described in the parameters.

Note that this example uses clean flag. So it recreates the whole vertices table.

SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt', clean := TRUE);
pgr_createtopology

OK

(1 row)

Warning:
An error would occur when the arguments are not given in the appropiriate order:
In this example, the column gid of the table mytable is passed to the function AS the geometry column,
and the geometry column mygeom is passed to the function AS the id column.

SELECT pgr_createTopology('mytable', 0.001, 'gid', 'mygeom', 'src', 'tgt');
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('mytable', 0.001, 'gid', 'mygeom', 'src', 'tgt', rows_where := 'true', clean := f)
NOTICE: Performing checks, please wait
NOTICE: ----> PGR ERROR in pgr_createTopology: Wrong type of Column id:mygeom
NOTICE: Unexpected error raise_exception
pgr_createtopology

FAIL

(1 row)

5.1. Topology Functions 47

pgRouting Manual, Release 2.3.2 (master)

When using the named notation

In this scenario omitting a parameter would create an error because the default values for the column names do
not match the column names of the table. The order of the parameters do not matter:

SELECT pgr_createTopology('mytable', 0.001, the_geom:='mygeom', id:='gid', source:='src', target:='tgt');
pgr_createtopology

OK

(1 row)

SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='mygeom');
pgr_createtopology

OK

(1 row)

Selecting rows using rows_where parameter

Based on id:

SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt', rows_where:='gid < 10');
pgr_createtopology

OK

(1 row)

SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='mygeom', rows_where:='gid < 10');
pgr_createtopology

OK

(1 row)

SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt',
rows_where:='mygeom && (SELECT st_buffer(mygeom, 1) FROM mytable WHERE gid=5)');

pgr_createtopology

OK

(1 row)

SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='mygeom',
rows_where:='mygeom && (SELECT st_buffer(mygeom, 1) FROM mytable WHERE gid=5)');

pgr_createtopology

OK

(1 row)

Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt',
rows_where:='mygeom && (SELECT st_buffer(other_geom, 1) FROM otherTable WHERE gid=100)');

pgr_createtopology

OK

(1 row)

SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='mygeom',
rows_where:='mygeom && (SELECT st_buffer(other_geom, 1) FROM otherTable WHERE gid=100)');

pgr_createtopology

48 Chapter 5. Topology functions

pgRouting Manual, Release 2.3.2 (master)

OK

(1 row)

Examples with full output

This example start a clean topology, with 5 edges, and then its incremented to the rest of the edges.

SELECT pgr_createTopology('edge_table', 0.001, rows_where:='id < 6', clean := true);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', rows_where := 'id < 6', clean := t)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 5 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --
pgr_createtopology

OK

(1 row)

SELECT pgr_createTopology('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', rows_where := 'true', clean := f)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 13 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --
pgr_createtopology

OK

(1 row)

The example uses the Sample Data network.

See Also

• Routing Topology for an overview of a topology for routing algorithms.

• pgr_createVerticesTable to reconstruct the vertices table based on the source and target information.

• pgr_analyzeGraph to analyze the edges and vertices of the edge table.

Indices and tables

• genindex

• search

5.1.2 pgr_createVerticesTable

Name

pgr_createVerticesTable — Reconstructs the vertices table based on the source and target information.

5.1. Topology Functions 49

pgRouting Manual, Release 2.3.2 (master)

Synopsis

The function returns:

• OK after the vertices table has been reconstructed.

• FAIL when the vertices table was not reconstructed due to an error.

pgr_createVerticesTable(edge_table, the_geom, source, target, rows_where)
RETURNS VARCHAR

Description

Parameters

The reconstruction of the vertices table function accepts the following parameters:

edge_table text Network table name. (may contain the schema name as well)

the_geom text Geometry column name of the network table. Default value is the_geom.

source text Source column name of the network table. Default value is source.

target text Target column name of the network table. Default value is target.

rows_where text Condition to SELECT a subset or rows. Default value is true to indicate all
rows.

Warning: The edge_table will be affected
• An index will be created, if it doesn’t exists, to speed up the process to the following columns:

– the_geom
– source
– target

The function returns:

• OK after the vertices table has been reconstructed.

– Creates a vertices table: <edge_table>_vertices_pgr.

– Fills id and the_geom columns of the vertices table based on the source and target columns of the
edge table.

• FAIL when the vertices table was not reconstructed due to an error.

– A required column of the Network table is not found or is not of the appropriate type.

– The condition is not well formed.

– The names of source, target are the same.

– The SRID of the geometry could not be determined.

The Vertices Table

The vertices table is a requierment of the pgr_analyzeGraph and the pgr_analyzeOneway functions.

The structure of the vertices table is:

id bigint Identifier of the vertex.

cnt integer Number of vertices in the edge_table that reference this vertex. See pgr_analyze-
Graph.

chk integer Indicator that the vertex might have a problem. See pgr_analyzeGraph.

50 Chapter 5. Topology functions

pgRouting Manual, Release 2.3.2 (master)

ein integer Number of vertices in the edge_table that reference this vertex as incoming. See
pgr_analyzeOneway.

eout integer Number of vertices in the edge_table that reference this vertex as outgoing. See
pgr_analyzeOneway.

the_geom geometry Point geometry of the vertex.

History

• Renamed in version 2.0.0

Usage when the edge table’s columns MATCH the default values:

The simplest way to use pgr_createVerticesTable is:

SELECT pgr_createVerticesTable('edge_table');

When the arguments are given in the order described in the parameters:

SELECT pgr_createVerticesTable('edge_table','the_geom','source','target');

We get the same result as the simplest way to use the function.

Warning:
An error would occur when the arguments are not given in the appropriate order: In this example, the column
source column source of the table mytable is passed to the function as the geometry column, and the
geometry column the_geom is passed to the function as the source column.
SELECT
pgr_createVerticesTable(’edge_table’,’source’,’the_geom’,’target’);

When using the named notation

The order of the parameters do not matter:

SELECT pgr_createVerticesTable('edge_table',the_geom:='the_geom',source:='source',target:='target');

SELECT pgr_createVerticesTable('edge_table',source:='source',target:='target',the_geom:='the_geom');

Parameters defined with a default value can be omitted, as long as the value matches the default:

SELECT pgr_createVerticesTable('edge_table',source:='source');

Selecting rows using rows_where parameter

Selecting rows based on the id.

SELECT pgr_createVerticesTable('edge_table',rows_where:='id < 10');

Selecting the rows where the geometry is near the geometry of row with id =5 .

SELECT pgr_createVerticesTable('edge_table',rows_where:='the_geom && (select st_buffer(the_geom,0.5) FROM edge_table WHERE id=5)');

Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

5.1. Topology Functions 51

pgRouting Manual, Release 2.3.2 (master)

DROP TABLE IF EXISTS otherTable;
CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5,2.5) AS other_geom) ;
SELECT pgr_createVerticesTable('edge_table',rows_where:='the_geom && (select st_buffer(othergeom,0.5) FROM otherTable WHERE gid=100)');

Usage when the edge table’s columns DO NOT MATCH the default values:

For the following table

DROP TABLE IF EXISTS mytable;
CREATE TABLE mytable AS (SELECT id AS gid, the_geom AS mygeom,source AS src ,target AS tgt FROM edge_table) ;

Using positional notation:

The arguments need to be given in the order described in the parameters:

SELECT pgr_createVerticesTable('mytable','mygeom','src','tgt');

Warning:
An error would occur when the arguments are not given in the appropriate order: In this example, the column
src of the table mytable is passed to the function as the geometry column, and the geometry column
mygeom is passed to the function as the source column.
SELECT pgr_createVerticesTable(’mytable’,’src’,’mygeom’,’tgt’);

When using the named notation

The order of the parameters do not matter:

SELECT pgr_createVerticesTable('mytable',the_geom:='mygeom',source:='src',target:='tgt');

SELECT pgr_createVerticesTable('mytable',source:='src',target:='tgt',the_geom:='mygeom');

In this scenario omitting a parameter would create an error because the default values for the column names do
not match the column names of the table.

Selecting rows using rows_where parameter

Selecting rows based on the gid.

SELECT pgr_createVerticesTable('mytable','mygeom','src','tgt',rows_where:='gid < 10');

SELECT pgr_createVerticesTable('mytable',source:='src',target:='tgt',the_geom:='mygeom',rows_where:='gid < 10');

Selecting the rows where the geometry is near the geometry of row with gid =5 .

SELECT pgr_createVerticesTable('mytable','mygeom','src','tgt',
rows_where:='the_geom && (SELECT st_buffer(mygeom,0.5) FROM mytable WHERE gid=5)');

SELECT pgr_createVerticesTable('mytable',source:='src',target:='tgt',the_geom:='mygeom',
rows_where:='mygeom && (SELECT st_buffer(mygeom,0.5) FROM mytable WHERE id=5)');

Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

DROP TABLE IF EXISTS otherTable;
CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5,2.5) AS other_geom) ;
SELECT pgr_createVerticesTable('mytable','mygeom','src','tgt',

rows_where:='the_geom && (SELECT st_buffer(othergeom,0.5) FROM otherTable WHERE gid=100)');

52 Chapter 5. Topology functions

pgRouting Manual, Release 2.3.2 (master)

SELECT pgr_createVerticesTable('mytable',source:='src',target:='tgt',the_geom:='mygeom',
rows_where:='the_geom && (SELECT st_buffer(othergeom,0.5) FROM otherTable WHERE gid=100)');

Examples

SELECT pgr_createVerticesTable('edge_table');
NOTICE: PROCESSING:

NOTICE: pgr_createVerticesTable('edge_table','the_geom','source','target','true')
NOTICE: Performing checks, pelase wait
NOTICE: Populating public.edge_table_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE: FOR 18 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 18
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --

pgr_createVerticesTable

OK

(1 row)

The example uses the Sample Data network.

See Also

• Routing Topology for an overview of a topology for routing algorithms.

• pgr_createTopology to create a topology based on the geometry.

• pgr_analyzeGraph to analyze the edges and vertices of the edge table.

• pgr_analyzeOneway to analyze directionality of the edges.

5.1.3 pgr_analyzeGraph

Name

pgr_analyzeGraph — Analyzes the network topology.

Synopsis

The function returns:

• OK after the analysis has finished.

• FAIL when the analysis was not completed due to an error.

varchar pgr_analyzeGraph(text edge_table, double precision tolerance,
text the_geom:='the_geom', text id:='id',
text source:='source',text target:='target',text rows_where:='true')

Description

Prerequisites

The edge table to be analyzed must contain a source column and a target column filled with id’s of the vertices of
the segments and the corresponding vertices table <edge_table>_vertices_pgr that stores the vertices information.

5.1. Topology Functions 53

pgRouting Manual, Release 2.3.2 (master)

• Use pgr_createVerticesTable to create the vertices table.

• Use pgr_createTopology to create the topology and the vertices table.

Parameters

The analyze graph function accepts the following parameters:

edge_table text Network table name. (may contain the schema name as well)

tolerance float8 Snapping tolerance of disconnected edges. (in projection unit)

the_geom text Geometry column name of the network table. Default value is the_geom.

id text Primary key column name of the network table. Default value is id.

source text Source column name of the network table. Default value is source.

target text Target column name of the network table. Default value is target.

rows_where text Condition to select a subset or rows. Default value is true to indicate all rows.

The function returns:

• OK after the analysis has finished.

– Uses the vertices table: <edge_table>_vertices_pgr.

– Fills completely the cnt and chk columns of the vertices table.

– Returns the analysis of the section of the network defined by rows_where

• FAIL when the analysis was not completed due to an error.

– The vertices table is not found.

– A required column of the Network table is not found or is not of the appropriate type.

– The condition is not well formed.

– The names of source , target or id are the same.

– The SRID of the geometry could not be determined.

The Vertices Table

The vertices table can be created with pgr_createVerticesTable or pgr_createTopology

The structure of the vertices table is:

id bigint Identifier of the vertex.

cnt integer Number of vertices in the edge_table that reference this vertex.

chk integer Indicator that the vertex might have a problem.

ein integer Number of vertices in the edge_table that reference this vertex as incoming. See
pgr_analyzeOneway.

eout integer Number of vertices in the edge_table that reference this vertex as outgoing. See
pgr_analyzeOneway.

the_geom geometry Point geometry of the vertex.

History

• New in version 2.0.0

54 Chapter 5. Topology functions

pgRouting Manual, Release 2.3.2 (master)

Usage when the edge table’s columns MATCH the default values:

The simplest way to use pgr_analyzeGraph is:

SELECT pgr_createTopology('edge_table',0.001);
SELECT pgr_analyzeGraph('edge_table',0.001);

When the arguments are given in the order described in the parameters:

SELECT pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target');

We get the same result as the simplest way to use the function.

Warning:
An error would occur when the arguments are not given in the appropriate order: In this example, the column
id of the table mytable is passed to the function as the geometry column, and the geometry column
the_geom is passed to the function as the id column.
SELECT
pgr_analyzeGraph(’edge_table’,0.001,’id’,’the_geom’,’source’,’target’);

ERROR: Can not determine the srid of the geometry “id” in table public.edge_table

When using the named notation

The order of the parameters do not matter:

SELECT pgr_analyzeGraph('edge_table',0.001,the_geom:='the_geom',id:='id',source:='source',target:='target');

SELECT pgr_analyzeGraph('edge_table',0.001,source:='source',id:='id',target:='target',the_geom:='the_geom');

Parameters defined with a default value can be omitted, as long as the value matches the default:

SELECT pgr_analyzeGraph('edge_table',0.001,source:='source');

Selecting rows using rows_where parameter

Selecting rows based on the id. Displays the analysis a the section of the network.

SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='id < 10');

Selecting the rows where the geometry is near the geometry of row with id =5 .

SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='the_geom && (SELECT st_buffer(the_geom,0.05) FROM edge_table WHERE id=5)');

Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

DROP TABLE IF EXISTS otherTable;
CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5,2.5) AS other_geom) ;
SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='the_geom && (SELECT st_buffer(other_geom,1) FROM otherTable WHERE gid=100)');

Usage when the edge table’s columns DO NOT MATCH the default values:

For the following table

DROP TABLE IF EXISTS mytable;
CREATE TABLE mytable AS (SELECT id AS gid, source AS src ,target AS tgt , the_geom AS mygeom FROM edge_table);
SELECT pgr_createTopology('mytable',0.001,'mygeom','gid','src','tgt');

5.1. Topology Functions 55

pgRouting Manual, Release 2.3.2 (master)

Using positional notation:

The arguments need to be given in the order described in the parameters:

SELECT pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt');

Warning:
An error would occur when the arguments are not given in the appropriate order: In this example, the column
gid of the table mytable is passed to the function as the geometry column, and the geometry column
mygeom is passed to the function as the id column.
SELECT pgr_analyzeGraph(’mytable’,0.001,’gid’,’mygeom’,’src’,’tgt’);

ERROR: Can not determine the srid of the geometry “gid” in table public.mytable

When using the named notation

The order of the parameters do not matter:

SELECT pgr_analyzeGraph('mytable',0.001,the_geom:='mygeom',id:='gid',source:='src',target:='tgt');

SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:='gid',target:='tgt',the_geom:='mygeom');

In this scenario omitting a parameter would create an error because the default values for the column names do
not match the column names of the table.

Selecting rows using rows_where parameter

Selecting rows based on the id.

SELECT pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt',rows_where:='gid < 10');

SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:='gid',target:='tgt',the_geom:='mygeom',rows_where:='gid < 10');

Selecting the rows WHERE the geometry is near the geometry of row with id =5 .

SELECT pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt',
rows_where:='mygeom && (SELECT st_buffer(mygeom,1) FROM mytable WHERE gid=5)');

SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:='gid',target:='tgt',the_geom:='mygeom',
rows_where:='mygeom && (SELECT st_buffer(mygeom,1) FROM mytable WHERE gid=5)');

Selecting the rows WHERE the geometry is near the place=’myhouse’ of the table othertable. (note the use
of quote_literal)

DROP TABLE IF EXISTS otherTable;
CREATE TABLE otherTable AS (SELECT 'myhouse'::text AS place, st_point(2.5,2.5) AS other_geom) ;
SELECT pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt',

rows_where:='mygeom && (SELECT st_buffer(other_geom,1) FROM otherTable WHERE place='||quote_literal('myhouse')||')');

SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:='gid',target:='tgt',the_geom:='mygeom',
rows_where:='mygeom && (SELECT st_buffer(other_geom,1) FROM otherTable WHERE place='||quote_literal('myhouse')||')');

Examples

SELECT pgr_createTopology('edge_table',0.001);
SELECT pgr_analyzeGraph('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','true')

56 Chapter 5. Topology functions

pgRouting Manual, Release 2.3.2 (master)

NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0

pgr_analyzeGraph

OK

(1 row)

SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='id < 10');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','id < 10')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 4
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0

pgr_analyzeGraph

OK

(1 row)

SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='id >= 10');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','id >= 10')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 8
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0

pgr_analyzeGraph

OK

(1 row)

-- Simulate removal of edges
SELECT pgr_createTopology('edge_table', 0.001,rows_where:='id <17');
SELECT pgr_analyzeGraph('edge_table', 0.001);

5.1. Topology Functions 57

pgRouting Manual, Release 2.3.2 (master)

NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','true')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 3
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0

pgr_analyzeGraph

OK

(1 row)
SELECT pgr_createTopology('edge_table', 0.001,rows_where:='id <17');
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table',0.001,'the_geom','id','source','target','id <17')
NOTICE: Performing checks, pelase wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 16 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --

pgr_analyzeGraph

OK

(1 row)

SELECT pgr_analyzeGraph('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','true')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 3
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0

pgr_analyzeGraph

OK

(1 row)

The examples use the Sample Data network.

See Also

• Routing Topology for an overview of a topology for routing algorithms.

• pgr_analyzeOneway to analyze directionality of the edges.

58 Chapter 5. Topology functions

pgRouting Manual, Release 2.3.2 (master)

• pgr_createVerticesTable to reconstruct the vertices table based on the source and target information.

• pgr_nodeNetwork to create nodes to a not noded edge table.

5.1.4 pgr_analyzeOneway

Name

pgr_analyzeOneway — Analyzes oneway Sstreets and identifies flipped segments.

Synopsis

This function analyzes oneway streets in a graph and identifies any flipped segments.

text pgr_analyzeOneway(geom_table text,
text[] s_in_rules, text[] s_out_rules,
text[] t_in_rules, text[] t_out_rules,
text oneway='oneway', text source='source', text target='target',
boolean two_way_if_null=true);

Description

The analyses of one way segments is pretty simple but can be a powerful tools to identifying some the potential
problems created by setting the direction of a segment the wrong way. A node is a source if it has edges the exit
from that node and no edges enter that node. Conversely, a node is a sink if all edges enter the node but none
exit that node. For a source type node it is logically impossible to exist because no vehicle can exit the node if no
vehicle and enter the node. Likewise, if you had a sink node you would have an infinite number of vehicle piling
up on this node because you can enter it but not leave it.

So why do we care if the are not feasible? Well if the direction of an edge was reversed by mistake we could
generate exactly these conditions. Think about a divided highway and on the north bound lane one segment
got entered wrong or maybe a sequence of multiple segments got entered wrong or maybe this happened on a
round-about. The result would be potentially a source and/or a sink node.

So by counting the number of edges entering and exiting each node we can identify both source and sink nodes
so that you can look at those areas of your network to make repairs and/or report the problem back to your data
vendor.

Prerequisites

The edge table to be analyzed must contain a source column and a target column filled with id’s of the vertices of
the segments and the corresponding vertices table <edge_table>_vertices_pgr that stores the vertices information.

• Use pgr_createVerticesTable to create the vertices table.

• Use pgr_createTopology to create the topology and the vertices table.

Parameters

edge_table text Network table name. (may contain the schema name as well)

s_in_rules text[] source node in rules

s_out_rules text[] source node out rules

t_in_rules text[] target node in rules

t_out_rules text[] target node out rules

5.1. Topology Functions 59

pgRouting Manual, Release 2.3.2 (master)

oneway text oneway column name name of the network table. Default value is oneway.

source text Source column name of the network table. Default value is source.

target text Target column name of the network table. Default value is target.

two_way_if_null boolean flag to treat oneway NULL values as bi-directional. Default value is
true.

Note: It is strongly recommended to use the named notation. See pgr_createVerticesTable or pgr_createTopology
for examples.

The function returns:

• OK after the analysis has finished.

– Uses the vertices table: <edge_table>_vertices_pgr.

– Fills completely the ein and eout columns of the vertices table.

• FAIL when the analysis was not completed due to an error.

– The vertices table is not found.

– A required column of the Network table is not found or is not of the appropriate type.

– The names of source , target or oneway are the same.

The rules are defined as an array of text strings that if match the oneway value would be counted as true for the
source or target in or out condition.

The Vertices Table

The vertices table can be created with pgr_createVerticesTable or pgr_createTopology

The structure of the vertices table is:

id bigint Identifier of the vertex.

cnt integer Number of vertices in the edge_table that reference this vertex. See pgr_analyzeG-
graph.

chk integer Indicator that the vertex might have a problem. See pgr_analyzeGraph.

ein integer Number of vertices in the edge_table that reference this vertex as incoming.

eout integer Number of vertices in the edge_table that reference this vertex as outgoing.

the_geom geometry Point geometry of the vertex.

History

• New in version 2.0.0

Examples

SELECT pgr_analyzeOneway('edge_table',
ARRAY['', 'B', 'TF'],
ARRAY['', 'B', 'FT'],
ARRAY['', 'B', 'FT'],
ARRAY['', 'B', 'TF'],
oneway:='dir');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table','{"",B,TF}','{"",B,FT}','{"",B,FT}','{"",B,TF}','dir','source','target',t)
NOTICE: Analyzing graph for one way street errors.

60 Chapter 5. Topology functions

pgRouting Manual, Release 2.3.2 (master)

NOTICE: Analysis 25% complete ...
NOTICE: Analysis 50% complete ...
NOTICE: Analysis 75% complete ...
NOTICE: Analysis 100% complete ...
NOTICE: Found 0 potential problems in directionality

pgr_analyzeoneway

OK
(1 row)

The queries use the Sample Data network.

See Also

• Routing Topology for an overview of a topology for routing algorithms.

• Graph Analytics for an overview of the analysis of a graph.

• pgr_analyzeGraph to analyze the edges and vertices of the edge table.

• pgr_createVerticesTable to reconstruct the vertices table based on the source and target information.

5.1.5 pgr_nodeNetwork

Name

pgr_nodeNetwork - Nodes an network edge table.

Author Nicolas Ribot

Copyright Nicolas Ribot, The source code is released under the MIT-X license.

Synopsis

The function reads edges from a not “noded” network table and writes the “noded” edges into a new table.

pgr_nodenetwork(edge_table, tolerance, id, text the_geom, table_ending, rows_where, outall)
RETURNS TEXT

Description

A common problem associated with bringing GIS data into pgRouting is the fact that the data is often not “noded”
correctly. This will create invalid topologies, which will result in routes that are incorrect.

What we mean by “noded” is that at every intersection in the road network all the edges will be broken into
separate road segments. There are cases like an over-pass and under-pass intersection where you can not traverse
from the over-pass to the under-pass, but this function does not have the ability to detect and accommodate those
situations.

This function reads the edge_table table, that has a primary key column id and geometry column named
the_geom and intersect all the segments in it against all the other segments and then creates a table edge_-
table_noded. It uses the tolerance for deciding that multiple nodes within the tolerance are considered the
same node.

Parameters

edge_table text Network table name. (may contain the schema name as well)

tolerance float8 tolerance for coincident points (in projection unit)dd

5.1. Topology Functions 61

pgRouting Manual, Release 2.3.2 (master)

id text Primary key column name of the network table. Default value is id.

the_geom text Geometry column name of the network table. Default value is the_geom.

table_ending text Suffix for the new table’s. Default value is noded.

The output table will have for edge_table_noded

id bigint Unique identifier for the table

old_id bigint Identifier of the edge in original table

sub_id integer Segment number of the original edge

source integer Empty source column to be used with pgr_createTopology function

target integer Empty target column to be used with pgr_createTopology function

the geom geometry Geometry column of the noded network

History

• New in version 2.0.0

Example

Let’s create the topology for the data in Sample Data

SELECT pgr_createTopology('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table',0.001,'the_geom','id','source','target','true')
NOTICE: Performing checks, pelase wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 18 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --
pgr_createtopology

OK

(1 row)

Now we can analyze the network.

SELECT pgr_analyzegraph('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','true')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
pgr_analyzegraph

OK

(1 row)

62 Chapter 5. Topology functions

pgRouting Manual, Release 2.3.2 (master)

The analysis tell us that the network has a gap and and an intersection. We try to fix the problem using:

SELECT pgr_nodeNetwork('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_nodeNetwork('edge_table',0.001,'the_geom','id','noded')
NOTICE: Performing checks, pelase wait
NOTICE: Processing, pelase wait
NOTICE: Split Edges: 3
NOTICE: Untouched Edges: 15
NOTICE: Total original Edges: 18
NOTICE: Edges generated: 6
NOTICE: Untouched Edges: 15
NOTICE: Total New segments: 21
NOTICE: New Table: public.edge_table_noded
NOTICE: ----------------------------------
pgr_nodenetwork

OK

(1 row)

Inspecting the generated table, we can see that edges 13,14 and 18 has been segmented

SELECT old_id,sub_id FROM edge_table_noded ORDER BY old_id,sub_id;
old_id | sub_id

--------+--------
1 | 1
2 | 1
3 | 1
4 | 1
5 | 1
6 | 1
7 | 1
8 | 1
9 | 1
10 | 1
11 | 1
12 | 1
13 | 1
13 | 2
14 | 1
14 | 2
15 | 1
16 | 1
17 | 1
18 | 1
18 | 2

(21 rows)

We can create the topology of the new network

SELECT pgr_createTopology('edge_table_noded', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table_noded',0.001,'the_geom','id','source','target','true')
NOTICE: Performing checks, pelase wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 21 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table_noded is: public.edge_table_noded_vertices_pgr
NOTICE: --
pgr_createtopology

OK

(1 row)

5.1. Topology Functions 63

pgRouting Manual, Release 2.3.2 (master)

Now let’s analyze the new topology

SELECT pgr_analyzegraph('edge_table_noded', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table_noded',0.001,'the_geom','id','source','target','true')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 6
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0
pgr_createtopology

OK

(1 row)

Images

Before Image

64 Chapter 5. Topology functions

pgRouting Manual, Release 2.3.2 (master)

After Image

Comparing the results

Comparing with the Analysis in the original edge_table, we see that.

Before After
Table name edge_table edge_table_noded
Fields All original fields Has only basic fields to do a topol-

ogy analysis
Dead ends

• Edges with 1 dead end:
1,6,24

• Edges with 2 dead ends 17,18
Edge 17’s right node is a dead end
because there is no other edge shar-
ing that same node. (cnt=1)

Edges with 1 dead end: 1-1 ,6-1,14-
2, 18-1 17-1 18-2

Isolated segments two isolated segments: 17 and 18
both they have 2 dead ends No Isolated segments

• Edge 17 now shares a
node with edges 14-1
and 14-2

• Edges 18-1 and 18-2
share a node with edges
13-1 and 13-2

Gaps There is a gap between edge 17 and
14 because edge 14 is near to the
right node of edge 17

Edge 14 was segmented Now edges:
14-1 14-2 17 share the same node
The tolerance value was taken in ac-
count

Intersections Edges 13 and 18 were intersecting Edges were segmented, So, now
in the interection’s point there is a
node and the following edges share
it: 13-1 13-2 18-1 18-2

5.1. Topology Functions 65

pgRouting Manual, Release 2.3.2 (master)

Now, we are going to include the segments 13-1, 13-2 14-1, 14-2 ,18-1 and 18-2 into our edge-table, copying the
data for dir,cost,and reverse cost with tho following steps:

• Add a column old_id into edge_table, this column is going to keep track the id of the original edge

• Insert only the segmented edges, that is, the ones whose max(sub_id) >1

alter table edge_table drop column if exists old_id;
alter table edge_table add column old_id integer;
insert into edge_table (old_id,dir,cost,reverse_cost,the_geom)

(with
segmented as (select old_id,count(*) as i from edge_table_noded group by old_id)
select segments.old_id,dir,cost,reverse_cost,segments.the_geom

from edge_table as edges join edge_table_noded as segments on (edges.id = segments.old_id)
where edges.id in (select old_id from segmented where i>1));

We recreate the topology:

SELECT pgr_createTopology('edge_table', 0.001);

NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table',0.001,'the_geom','id','source','target','true')
NOTICE: Performing checks, pelase wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 24 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --
pgr_createtopology

OK
(1 row)

To get the same analysis results as the topology of edge_table_noded, we do the following query:

SELECT pgr_analyzegraph('edge_table', 0.001,rows_where:='id not in (select old_id from edge_table where old_id is not null)');

NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target',

'id not in (select old_id from edge_table where old_id is not null)')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 6
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0
pgr_createtopology

OK
(1 row)

To get the same analysis results as the original edge_table, we do the following query:

SELECT pgr_analyzegraph('edge_table', 0.001,rows_where:='old_id is null')

NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','old_id is null')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...

66 Chapter 5. Topology functions

pgRouting Manual, Release 2.3.2 (master)

NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
pgr_createtopology

OK
(1 row)

Or we can analyze everything because, maybe edge 18 is an overpass, edge 14 is an under pass and there is also a
street level juction, and the same happens with edges 17 and 13.

SELECT pgr_analyzegraph('edge_table', 0.001);

NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','true')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 3
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 5
NOTICE: Ring geometries: 0
pgr_createtopology

OK
(1 row)

See Also

Routing Topology for an overview of a topology for routing algorithms. pgr_analyzeOneway to analyze direction-
ality of the edges. pgr_createTopology to create a topology based on the geometry. pgr_analyzeGraph to analyze
the edges and vertices of the edge table.

5.1. Topology Functions 67

pgRouting Manual, Release 2.3.2 (master)

68 Chapter 5. Topology functions

CHAPTER 6

Routing Functions

6.1 Routing Functions

• All pairs - All pair of vertices.

– pgr_floydWarshall - Floyd-Warshall’s Algorithm

– pgr_johnson- Johnson’s Algorithm

• pgr_astar - Shortest Path A*

• pgr_bdAstar - Bi-directional A* Shortest Path

• pgr_bdDijkstra - Bi-directional Dijkstra Shortest Path

• dijkstra - Dijkstra family functions

– pgr_dijkstra - Dijkstra’s shortest path algorithm.

– pgr_dijkstraCost - Use pgr_dijkstra to calculate the costs of the shortest paths.

• Driving Distance - Driving Distance

– pgr_drivingDistance - Driving Distance

– Post processing

* pgr_alphaShape - Alpha shape computation

* pgr_pointsAsPolygon - Polygon around set of points

• pgr_ksp - K-Shortest Path

• pgr_trsp - Turn Restriction Shortest Path (TRSP)

• Traveling Sales Person

– pgr_TSP - When input is a cost matrix.

– pgr_eucledianTSP - When input are coordinates.

6.1.1 All pairs

The following functions work an all vertices pair combinations

• pgr_floydWarshall - Floyd-Warshall’s algorithm.

• pgr_johnson - Johnson’s algorithm

69

pgRouting Manual, Release 2.3.2 (master)

pgr_floydWarshall

Synopsis

pgr_floydWarshall - Returns the sum of the costs of the shortest path for each pair of nodes in the graph
using Floyd-Warshall algorithm.

1

Fig. 6.1: Boost Graph Inside

The Floyd-Warshall algorithm, also known as Floyd’s algorithm, is a good choice to calculate the sum of the
costs of the shortest path for each pair of nodes in the graph, for dense graphs. We make use of the Boost’s
implementation which runs in Θ(𝑉 3) time,

Characteristics

The main Characteristics are:

• It does not return a path.

• Returns the sum of the costs of the shortest path for each pair of nodes in the graph.

• Process is done only on edges with positive costs.

• Boost returns a 𝑉 × 𝑉 matrix, where the infinity values. Represent the distance between vertices for
which there is no path.

– We return only the non infinity values in form of a set of (start_vid, end_vid, agg_cost).

• Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_-
vid, end_vid).

• For the undirected graph, the results are symmetric.

– The agg_cost of (u, v) is the same as for (v, u).

• When start_vid = end_vid, the agg_cost = 0.

• Recommended, use a bounding box of no more than 3500 edges.

Signature Summary

pgr_floydWarshall(edges_sql)
pgr floydWarshall(edges_sql, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

Signatures

Minimal Signature
pgr_floydWarshall(edges_sql)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

Example 1 On a directed graph.

70 Chapter 6. Routing Functions

http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html

pgRouting Manual, Release 2.3.2 (master)

SELECT * FROM pgr_floydWarshall(
'SELECT id, source, target, cost FROM edge_table where id < 5'

);
start_vid | end_vid | agg_cost

-----------+---------+----------
1 | 2 | 1
1 | 5 | 2
2 | 5 | 1

(3 rows)

Complete Signature
pgr_floydWarshall(edges_sql, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

Example 2 On an undirected graph.

SELECT * FROM pgr_floydWarshall(
'SELECT id, source, target, cost FROM edge_table where id < 5',
false

);
start_vid | end_vid | agg_cost

-----------+---------+----------
1 | 2 | 1
1 | 5 | 2
2 | 1 | 1
2 | 5 | 1
5 | 1 | 2
5 | 2 | 1

(6 rows)

Description of the Signatures

Description of the edges_sql query

edges_sql an SQL query, which should return a set of rows with the following columns:

6.1. Routing Functions 71

pgRouting Manual, Release 2.3.2 (master)

Column Type Default Description
source ANY-INTEGER Identifier of the first end

point vertex of the edge.
target ANY-INTEGER Identifier of the second end

point vertex of the edge.
cost ANY-NUMERICAL

Weight of the edge (source, target)

• When neg-
ative: edge
(source, tar-
get) does not
exist, therefore
it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1
Weight of the edge (target, source),

• When nega-
tive: edge (tar-
get, source)
does not exist,
therefore it’s
not part of the
graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures Receives (edges_sql, directed)

Parame-
ter

Type Description

edges_sql TEXT SQL query as described above.
directed BOOLEAN (optional) Default is true (is directed). When set to false the graph is considered as

Undirected

Description of the return values Returns set of (start_vid, end_vid, agg_cost)

Column Type Description
start_vid BIGINT Identifier of the starting vertex.
end_vid BIGINT Identifier of the ending vertex.
agg_cost FLOAT Total cost from start_vid to end_vid.

History

• Re-design of pgr_apspWarshall in Version 2.2.0

See Also

• pgr_johnson

72 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

• Boost floyd-Warshall2 algorithm

• Queries uses the Sample Data network.

Indices and tables

• genindex

• search

pgr_johnson

Synopsis

pgr_johnson - Returns the sum of the costs of the shortest path for each pair of nodes in the graph using
Floyd-Warshall algorithm.

3

Fig. 6.2: Boost Graph Inside

The Johnson algorithm, is a good choice to calculate the sum of the costs of the shortest path for each pair of
nodes in the graph, for sparse graphs. It usees the Boost’s implementation which runs in 𝑂(𝑉 𝐸 log 𝑉) time,

Characteristics

The main Characteristics are:

• It does not return a path.

• Returns the sum of the costs of the shortest path for each pair of nodes in the graph.

• Process is done only on edges with positive costs.

• Boost returns a 𝑉 × 𝑉 matrix, where the infinity values. Represent the distance between vertices for
which there is no path.

– We return only the non infinity values in form of a set of (start_vid, end_vid, agg_cost).

• Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_-
vid, end_vid).

• For the undirected graph, the results are symmetric.

– The agg_cost of (u, v) is the same as for (v, u).

• When start_vid = end_vid, the agg_cost = 0.

Signature Summary

pgr_johnson(edges_sql)
pgr johnson(edges_sql, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

2http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html

6.1. Routing Functions 73

http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html
http://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html

pgRouting Manual, Release 2.3.2 (master)

Signatures

Minimal Signature
pgr_johnson(edges_sql)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

Example 1 On a directed graph.

SELECT * FROM pgr_johnson(
'SELECT source, target, cost FROM edge_table WHERE id < 5

ORDER BY id'
);
start_vid | end_vid | agg_cost

-----------+---------+----------
1 | 2 | 1
1 | 5 | 2
2 | 5 | 1

(3 rows)

Complete Signature
pgr_johnson(edges_sql, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

Example 2 On an undirected graph.

SELECT * FROM pgr_johnson(
'SELECT source, target, cost FROM edge_table WHERE id < 5

ORDER BY id',
false

);
start_vid | end_vid | agg_cost

-----------+---------+----------
1 | 2 | 1
1 | 5 | 2
2 | 1 | 1
2 | 5 | 1
5 | 1 | 2
5 | 2 | 1

(6 rows)

Description of the Signatures

Description of the edges_sql query

edges_sql an SQL query, which should return a set of rows with the following columns:

74 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

Column Type Default Description
source ANY-INTEGER Identifier of the first end

point vertex of the edge.
target ANY-INTEGER Identifier of the second end

point vertex of the edge.
cost ANY-NUMERICAL

Weight of the edge (source, target)

• When neg-
ative: edge
(source, tar-
get) does not
exist, therefore
it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1
Weight of the edge (target, source),

• When nega-
tive: edge (tar-
get, source)
does not exist,
therefore it’s
not part of the
graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures Receives (edges_sql, directed)

Parame-
ter

Type Description

edges_sql TEXT SQL query as described above.
directed BOOLEAN (optional) Default is true (is directed). When set to false the graph is considered as

Undirected

Description of the return values Returns set of (start_vid, end_vid, agg_cost)

Column Type Description
start_vid BIGINT Identifier of the starting vertex.
end_vid BIGINT Identifier of the ending vertex.
agg_cost FLOAT Total cost from start_vid to end_vid.

History

• Re-design of pgr_apspJohnson in Version 2.2.0

See Also

• pgr_floydWarshall

6.1. Routing Functions 75

pgRouting Manual, Release 2.3.2 (master)

• Boost Johnson4 algorithm implementation.

• Queries uses the Sample Data network.

Indices and tables

• genindex

• search

Performance

The following tests:

• non server computer

• with AMD 64 CPU

• 4G memory

• trusty

• posgreSQL version 9.3

Data

The following data was used

BBOX="-122.8,45.4,-122.5,45.6"
wget --progress=dot:mega -O "sampledata.osm" "http://www.overpass-api.de/api/xapi?*[bbox=${BBOX}][@meta]"

Data processing was done with osm2pgrouting-alpha

createdb portland
psql -c "create extension postgis" portland
psql -c "create extension pgrouting" portland
osm2pgrouting -f sampledata.osm -d portland -s 0

Results

Test One

This test is not with a bounding box The density of the passed graph is extremely low. For each <SIZE> 30 tests
were executed to get the average The tested query is:

SELECT count(*) FROM pgr_floydWarshall(
'SELECT gid as id, source, target, cost, reverse_cost FROM ways where id <= <SIZE>');

SELECT count(*) FROM pgr_johnson(
'SELECT gid as id, source, target, cost, reverse_cost FROM ways where id <= <SIZE>');

The results of this tests are presented as:

SIZE is the number of edges given as input.

EDGES is the total number of records in the query.

DENSITY is the density of the data
𝐸

𝑉 × (𝑉 − 1)
.

OUT ROWS is the number of records returned by the queries.

4http://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html

76 Chapter 6. Routing Functions

http://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html

pgRouting Manual, Release 2.3.2 (master)

Floyd-Warshall is the average execution time in seconds of pgr_floydWarshall.

Johnson is the average execution time in seconds of pgr_johnson.

SIZE EDGES DENSITY OUT ROWS Floyd-Warshall Johnson
500 500 0.18E-7 1346 0.14 0.13
1000 1000 0.36E-7 2655 0.23 0.18
1500 1500 0.55E-7 4110 0.37 0.34
2000 2000 0.73E-7 5676 0.56 0.37
2500 2500 0.89E-7 7177 0.84 0.51
3000 3000 1.07E-7 8778 1.28 0.68
3500 3500 1.24E-7 10526 2.08 0.95
4000 4000 1.41E-7 12484 3.16 1.24
4500 4500 1.58E-7 14354 4.49 1.47
5000 5000 1.76E-7 16503 6.05 1.78
5500 5500 1.93E-7 18623 7.53 2.03
6000 6000 2.11E-7 20710 8.47 2.37
6500 6500 2.28E-7 22752 9.99 2.68
7000 7000 2.46E-7 24687 11.82 3.12
7500 7500 2.64E-7 26861 13.94 3.60
8000 8000 2.83E-7 29050 15.61 4.09
8500 8500 3.01E-7 31693 17.43 4.63
9000 9000 3.17E-7 33879 19.19 5.34
9500 9500 3.35E-7 36287 20.77 6.24
10000 10000 3.52E-7 38491 23.26 6.51

Test Two

This test is with a bounding box The density of the passed graph higher than of the Test One. For each <SIZE>
30 tests were executed to get the average The tested edge query is:

WITH
buffer AS (SELECT ST_Buffer(ST_Centroid(ST_Extent(the_geom)), SIZE) AS geom FROM ways),
bbox AS (SELECT ST_Envelope(ST_Extent(geom)) as box from buffer)

SELECT gid as id, source, target, cost, reverse_cost FROM ways where the_geom && (SELECT box from bbox);

The tested queries

SELECT count(*) FROM pgr_floydWarshall(<edge query>)
SELECT count(*) FROM pgr_johnson(<edge query>)

The results of this tests are presented as:

SIZE is the size of the bounding box.

EDGES is the total number of records in the query.

DENSITY is the density of the data
𝐸

𝑉 × (𝑉 − 1)
.

OUT ROWS is the number of records returned by the queries.

Floyd-Warshall is the average execution time in seconds of pgr_floydWarshall.

Johnson is the average execution time in seconds of pgr_johnson.

6.1. Routing Functions 77

pgRouting Manual, Release 2.3.2 (master)

SIZE EDGES DENSITY OUT ROWS Floyd-Warshall Johnson
0.001 44 0.0608 1197 0.10 0.10
0.002 99 0.0251 4330 0.10 0.10
0.003 223 0.0122 18849 0.12 0.12
0.004 358 0.0085 71834 0.16 0.16
0.005 470 0.0070 116290 0.22 0.19
0.006 639 0.0055 207030 0.37 0.27
0.007 843 0.0043 346930 0.64 0.38
0.008 996 0.0037 469936 0.90 0.49
0.009 1146 0.0032 613135 1.26 0.62
0.010 1360 0.0027 849304 1.87 0.82
0.011 1573 0.0024 1147101 2.65 1.04
0.012 1789 0.0021 1483629 3.72 1.35
0.013 1975 0.0019 1846897 4.86 1.68
0.014 2281 0.0017 2438298 7.08 2.28
0.015 2588 0.0015 3156007 10.28 2.80
0.016 2958 0.0013 4090618 14.67 3.76
0.017 3247 0.0012 4868919 18.12 4.48

See Also

• pgr_johnson

• pgr_floydWarshall

• Boost floyd-Warshall5 algorithm

Indices and tables

• genindex

• search

6.1.2 pgr_aStar

Name

pgr_aStar — Returns the shortest path using A* algorithm.

6

Fig. 6.3: Boost Graph Inside

Synopsis

The A* (pronounced “A Star”) algorithm is based on Dijkstra’s algorithm with a heuristic that allow it to solve
most shortest path problems by evaluation only a sub-set of the overall graph.

5http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html

78 Chapter 6. Routing Functions

http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html
http://www.boost.org/libs/graph

pgRouting Manual, Release 2.3.2 (master)

Characteristics

The main Characteristics are:

• Process is done only on edges with positive costs.

• Vertices of the graph are:

– positive when it belongs to the edges_sql

– negative when it belongs to the points_sql

• Values are returned when there is a path.

– When the starting vertex and ending vertex are the same, there is no path.

* The agg_cost the non included values (v, v) is 0

– When the starting vertex and ending vertex are the different and there is no path:

* The agg_cost the non included values (u, v) is ∞

• When (x,y) coordinates for the same vertex identifier differ:

– A random selection of the vertex’s (x,y) coordinates is used.

• Running time: 𝑂((𝐸 + 𝑉) * log 𝑉)

Signature Summary

pgr_aStar(edges_sql, start_vid, end_vid)
pgr_aStar(edges_sql, start_vid, end_vid, directed, heuristic, factor, epsilon)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)

Note: This signature is deprecated

pgr_aStar(sql, source integer, target integer, directed boolean, has_rcost boolean)
RETURNS SET OF pgr_costResult

• See pgr_costResult

• See pgr_astar - Deprecated Signature

Signatures

Minimal Signature

pgr_aStar(edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)

Example Using the defaults

SELECT * FROM pgr_astar(
'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
2, 12);

seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------

1 | 1 | 2 | 4 | 1 | 0
2 | 2 | 5 | 8 | 1 | 1
3 | 3 | 6 | 9 | 1 | 2
4 | 4 | 9 | 15 | 1 | 3
5 | 5 | 12 | -1 | 0 | 4

(5 rows)

6.1. Routing Functions 79

pgRouting Manual, Release 2.3.2 (master)

Complete Signature

pgr_aStar(edges_sql, start_vid, end_vid, directed, heuristic, factor, epsilon)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)

Example Setting a Heuristic

SELECT * FROM pgr_astar(
'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
2, 12, heuristic := 1);

seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------

1 | 1 | 2 | 4 | 1 | 0
2 | 2 | 5 | 8 | 1 | 1
3 | 3 | 6 | 9 | 1 | 2
4 | 4 | 9 | 15 | 1 | 3
5 | 5 | 12 | -1 | 0 | 4

(5 rows)

SELECT * FROM pgr_astar(
'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
2, 12, heuristic := 2);

seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------

1 | 1 | 2 | 4 | 1 | 0
2 | 2 | 5 | 8 | 1 | 1
3 | 3 | 6 | 9 | 1 | 2
4 | 4 | 9 | 15 | 1 | 3
5 | 5 | 12 | -1 | 0 | 4

(5 rows)

Description of the Signatures

Note: The following only aplies to the new signature(s)

Description of the edges_sql query

edges_sql an SQL query, which should return a set of rows with the following columns:

80 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end

point vertex of the edge.
target ANY-INTEGER Identifier of the second end

point vertex of the edge.
cost ANY-NUMERICAL

Weight of the edge (source, target)

• When neg-
ative: edge
(source, tar-
get) does not
exist, therefore
it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1
Weight of the edge (target, source),

• When nega-
tive: edge (tar-
get, source)
does not exist,
therefore it’s
not part of the
graph.

x1 ANY-NUMERICAL X coordinate of source
vertex.

y1 ANY-NUMERICAL Y coordinate of source
vertex.

x2 ANY-NUMERICAL X coordinate of target ver-
tex.

y2 ANY-NUMERICAL Y coordinate of target ver-
tex.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

6.1. Routing Functions 81

pgRouting Manual, Release 2.3.2 (master)

Description of the parameters of the signatures

Parameter Type Description
edges_sql TEXT Edges SQL query as described

above.
start_vid ANY-INTEGER Starting vertex identifier.
end_vid ANY-INTEGER Ending vertex identifier.
directed BOOLEAN

• Optional.
– When false the graph

is considered as Undi-
rected.

– Default is true which
considers the graph as
Directed.

heuristic INTEGER (optional). Heuristic number. Cur-
rent valid values 0~5. Default 5

• 0: h(v) = 0 (Use this value to
compare with pgr_dijkstra)

• 1: h(v) abs(max(dx, dy))
• 2: h(v) abs(min(dx, dy))
• 3: h(v) = dx * dx + dy * dy
• 4: h(v) = sqrt(dx * dx + dy *

dy)
• 5: h(v) = abs(dx) + abs(dy)

factor FLOAT (optional). For units manipulation.
𝑓𝑎𝑐𝑡𝑜𝑟 > 0. Default 1.

epsilon FLOAT (optional). For less restricted re-
sults. 𝑓𝑎𝑐𝑡𝑜𝑟 >= 1. Default 1.

Description of the return values

Returns set of (seq, path_seq, node, edge, cost, agg_cost)

82 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

Column Type Description
seq INTEGER Row sequence.
path_seq INTEGER Path sequence that indicates the rel-

ative position on the path.
node BIGINT

Identifier of the node:
• A positive value indi-

cates the node is a ver-
tex of edges_sql.

• A negative value indi-
cates the node is a point
of points_sql.

edge BIGINT
Identifier of the edge used to go from node to the next node in the path sequence.

• -1 for the last row in the
path sequence.

cost FLOAT
Cost to traverse from node using edge to the next node in the path sequence.

• 0 for the last row in the
path sequence.

agg_cost FLOAT
Aggregate cost from start_vid to node.

• 0 for the first row in the
path sequence.

About factor

Analysis 1

Working with cost/reverse_cost as length in degrees, x/y in lat/lon: Factor = 1 (no need to change units)

Analysis 2

Working with cost/reverse_cost as length in meters, x/y in lat/lon: Factor = would depend on the location of the
points:

latitude conversion Factor
45 1 longitude degree is 78846.81 m 78846
0 1 longitude degree is 111319.46 m 111319

Analysis 3

Working with cost/reverse_cost as time in seconds, x/y in lat/lon: Factor: would depend on the location of the
points and on the average speed say 25m/s is the speed.

latitude conversion Factor
45 1 longitude degree is (78846.81m)/(25m/s) 3153 s
0 1 longitude degree is (111319.46 m)/(25m/s) 4452 s

6.1. Routing Functions 83

pgRouting Manual, Release 2.3.2 (master)

History

• Functionality added version 2.3.0

• Renamed in version 2.0.0

Deprecated Signature

Example Using the deprecated signature

SELECT * FROM pgr_astar(
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
2, 12, true, true);

NOTICE: Deprecated signature of function pgr_astar
seq | id1 | id2 | cost

-----+-----+-----+------
0 | 2 | 4 | 1
1 | 5 | 8 | 1
2 | 6 | 9 | 1
3 | 9 | 15 | 1
4 | 12 | -1 | 0

(5 rows)

The queries use the Sample Data network.

See Also

• http://www.boost.org/libs/graph/doc/astar_search.html

• http://en.wikipedia.org/wiki/A*_search_algorithm

6.1.3 pgr_bdAstar - Bi-directional A* Shortest Path

Name

pgr_bdAstar - Returns the shortest path using Bidirectional A* algorithm.

Synopsis

This is a bi-directional A* search algorithm. It searches from the source toward the distination and at the same
time from the destination to the source and terminates whe these to searches meet in the middle. Returns a set of
pgr_costResult (seq, id1, id2, cost) rows, that make up a path.

pgr_costResult[] pgr_bdAstar(sql text, source integer, target integer,
directed boolean, has_rcost boolean);

Description

sql a SQL query, which should return a set of rows with the following columns:

SELECT id, source, target, cost, x1, y1, x2, y2 [,reverse_cost] FROM edge_table

id int4 identifier of the edge

source int4 identifier of the source vertex

target int4 identifier of the target vertex

84 Chapter 6. Routing Functions

http://www.boost.org/libs/graph/doc/astar_search.html
http://en.wikipedia.org/wiki/A*_search_algorithm

pgRouting Manual, Release 2.3.2 (master)

cost float8 value, of the edge traversal cost. A negative cost will prevent the edge
from being inserted in the graph.

x1 x coordinate of the start point of the edge

y1 y coordinate of the start point of the edge

x2 x coordinate of the end point of the edge

y2 y coordinate of the end point of the edge

reverse_cost (optional) the cost for the reverse traversal of the edge. This is only
used when the directed and has_rcost parameters are true (see the above
remark about negative costs).

source int4 id of the start point

target int4 id of the end point

directed true if the graph is directed

has_rcost if true, the reverse_cost column of the SQL generated set of rows will be used for
the cost of the traversal of the edge in the opposite direction.

Returns set of pgr_costResult[]:

seq row sequence

id1 node ID

id2 edge ID (-1 for the last row)

cost cost to traverse from id1 using id2

Warning: You must reconnect to the database after CREATE EXTENSION pgrouting. Otherwise the
function will return Error computing path: std::bad_alloc.

History

• New in version 2.0.0

Examples

• Without reverse_cost

SELECT * FROM pgr_bdAStar(
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, x1, y1, x2, y2
FROM edge_table',

4, 10, false, false);
seq | id1 | id2 | cost

-----+-----+-----+------
0 | 4 | 3 | 0
1 | 3 | 5 | 1
2 | 6 | 11 | 1
3 | 11 | 12 | 0
4 | 10 | -1 | 0

(5 rows)

• With reverse_cost

SELECT * FROM pgr_bdAStar(
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, x1, y1, x2, y2, reverse_cost
FROM edge_table ',

4, 10, true, true);

6.1. Routing Functions 85

pgRouting Manual, Release 2.3.2 (master)

seq | id1 | id2 | cost
-----+-----+-----+------

0 | 4 | 3 | 1
1 | 3 | 5 | 1
2 | 6 | 8 | 1
3 | 5 | 10 | 1
4 | 10 | -1 | 0

(5 rows)

The queries use the Sample Data network.

See Also

• pgr_costResult[]

• pgr_bdDijkstra - Bi-directional Dijkstra Shortest Path

• http://en.wikipedia.org/wiki/Bidirectional_search

• http://en.wikipedia.org/wiki/A*_search_algorithm

6.1.4 pgr_bdDijkstra - Bi-directional Dijkstra Shortest Path

Name

pgr_bdDijkstra - Returns the shortest path using Bidirectional Dijkstra algorithm.

Synopsis

This is a bi-directional Dijkstra search algorithm. It searches from the source toward the distination and at the
same time from the destination to the source and terminates whe these to searches meet in the middle. Returns a
set of pgr_costResult (seq, id1, id2, cost) rows, that make up a path.

pgr_costResult[] pgr_bdDijkstra(sql text, source integer, target integer,
directed boolean, has_rcost boolean);

Description

sql a SQL query, which should return a set of rows with the following columns:

SELECT id, source, target, cost [,reverse_cost] FROM edge_table

id int4 identifier of the edge

source int4 identifier of the source vertex

target int4 identifier of the target vertex

cost float8 value, of the edge traversal cost. A negative cost will prevent the edge
from being inserted in the graph.

reverse_cost (optional) the cost for the reverse traversal of the edge. This is only
used when the directed and has_rcost parameters are true (see the above
remark about negative costs).

source int4 id of the start point

target int4 id of the end point

directed true if the graph is directed

86 Chapter 6. Routing Functions

http://en.wikipedia.org/wiki/Bidirectional_search
http://en.wikipedia.org/wiki/A*_search_algorithm

pgRouting Manual, Release 2.3.2 (master)

has_rcost if true, the reverse_cost column of the SQL generated set of rows will be used for
the cost of the traversal of the edge in the opposite direction.

Returns set of pgr_costResult[]:

seq row sequence

id1 node ID

id2 edge ID (-1 for the last row)

cost cost to traverse from id1 using id2

History

• New in version 2.0.0

Examples

• Without reverse_cost

SELECT * FROM pgr_bdDijkstra(
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table',
4, 10, false, false);

seq | id1 | id2 | cost
-----+-----+-----+------

0 | 4 | | 0
1 | 3 | | 0
2 | 2 | | 1
3 | 5 | | 1
4 | 10 | | 0

(5 rows)

• With reverse_cost

SELECT * FROM pgr_bdDijkstra(
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table',
4, 10, true, true);

seq | id1 | id2 | cost
-----+-----+-----+------

0 | 4 | | 1
1 | 3 | | 1
2 | 2 | | 1
3 | 5 | | 1
4 | 10 | | 0

(5 rows)

The queries use the Sample Data network.

See Also

• pgr_costResult[]

• pgr_bdAstar - Bi-directional A* Shortest Path

• http://en.wikipedia.org/wiki/Bidirectional_search

• http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

6.1. Routing Functions 87

http://en.wikipedia.org/wiki/Bidirectional_search
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

pgRouting Manual, Release 2.3.2 (master)

6.1.5 Dijkstra - Family of functions

• pgr_dijkstra - Dijkstra’s algorithm for the shortest paths.

The following algorithms are based on pgr_dijkstra

• pgr_dijkstraCost - Get the aggregate cost of the shortest paths.

• pgr_drivingDistance - Get catchament information.

• pgr_ksp - Get the aggregate cost of the shortest paths.

pgr_dijkstra

pgr_dijkstra — Returns the shortest path(s) using Dijkstra algorithm. In particular, the Dijkstra algorithm
implemented by Boost.Graph.

7

Fig. 6.4: Boost Graph Inside

Synopsis

Dijkstra’s algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956. It is a graph search algorithm
that solves the shortest path problem for a graph with non-negative edge path costs, producing a shortest path from
a starting vertex (start_vid) to an ending vertex (end_vid). This implementation can be used with a directed
graph and an undirected graph.

Characteristics

The main Characteristics are:

• Process is done only on edges with positive costs.

• Values are returned when there is a path.

– When the starting vertex and ending vertex are the same, there is no path.

* The agg_cost the non included values (v, v) is 0

– When the starting vertex and ending vertex are the different and there is no path:

* The agg_cost the non included values (u, v) is ∞

• For optimization purposes, any duplicated value in the start_vids or end_vids are ignored.

• The returned values are ordered:

– start_vid ascending

– end_vid ascending

• Running time: 𝑂(|𝑠𝑡𝑎𝑟𝑡_𝑣𝑖𝑑𝑠| * (𝑉 log 𝑉 + 𝐸))

Signature Summary

88 Chapter 6. Routing Functions

http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html

pgRouting Manual, Release 2.3.2 (master)

pgr_dijkstra(edges_sql, start_vid, end_vid)
pgr_dijkstra(edges_sql, start_vid, end_vid, directed:=true)
pgr_dijkstra(edges_sql, start_vid, end_vids, directed:=true)
pgr_dijkstra(edges_sql, start_vids, end_vid, directed:=true)
pgr_dijkstra(edges_sql, start_vids, end_vids, directed:=true)

RETURNS SET OF (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)
OR EMPTY SET

Signatures

Minimal signature
pgr_dijkstra(TEXT edges_sql, BIGINT start_vid, BIGINT end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET

The minimal signature is for a directed graph from one start_vid to one end_vid:

Example

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 3

);
seq | path_seq | node | edge | cost | agg_cost

-----+----------+------+------+------+----------
1 | 1 | 2 | 4 | 1 | 0
2 | 2 | 5 | 8 | 1 | 1
3 | 3 | 6 | 9 | 1 | 2
4 | 4 | 9 | 16 | 1 | 3
5 | 5 | 4 | 3 | 1 | 4
6 | 6 | 3 | -1 | 0 | 5

(6 rows)

pgr_dijkstra One to One
pgr_dijkstra(TEXT edges_sql, BIGINT start_vid, BIGINT end_vid,

BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET

This signature finds the shortest path from one start_vid to one end_vid:

• on a directed graph when directed flag is missing or is set to true.

• on an undirected graph when directed flag is set to false.

Example

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 3,
FALSE

);
seq | path_seq | node | edge | cost | agg_cost

-----+----------+------+------+------+----------
1 | 1 | 2 | 2 | 1 | 0
2 | 2 | 3 | -1 | 0 | 1

(2 rows)

pgr_dijkstra One to many

6.1. Routing Functions 89

pgRouting Manual, Release 2.3.2 (master)

pgr_dijkstra(TEXT edges_sql, BIGINT start_vid, ARRAY[ANY_INTEGER] end_vids,
BOOLEAN directed:=true);

RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost) or EMPTY SET

This signature finds the shortest path from one start_vid to each end_vid in end_vids:

• on a directed graph when directed flag is missing or is set to true.

• on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform a one to one pgr_dijkstra where the starting vertex is
fixed, and stop when all end_vids are reached.

• The result is equivalent to the union of the results of the one to one pgr_dijkstra.

• The extra end_vid in the result is used to distinguish to which path it belongs.

Example

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
2, ARRAY[3,5],
FALSE

);
seq | path_seq | end_vid | node | edge | cost | agg_cost

-----+----------+---------+------+------+------+----------
1 | 1 | 3 | 2 | 4 | 1 | 0
2 | 2 | 3 | 5 | 8 | 1 | 1
3 | 3 | 3 | 6 | 5 | 1 | 2
4 | 4 | 3 | 3 | -1 | 0 | 3
5 | 1 | 5 | 2 | 4 | 1 | 0
6 | 2 | 5 | 5 | -1 | 0 | 1

(6 rows)

pgr_dijkstra Many to One
pgr_dijkstra(TEXT edges_sql, ARRAY[ANY_INTEGER] start_vids, BIGINT end_vid,

BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost) or EMPTY SET

This signature finds the shortest path from each start_vid in start_vids to one end_vid:

• on a directed graph when directed flag is missing or is set to true.

• on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to one pgr_dijkstra where the ending vertex
is fixed.

• The result is the union of the results of the one to one pgr_dijkstra.

• The extra start_vid in the result is used to distinguish to which path it belongs.

Example

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2,11], 5

);
seq | path_seq | start_vid | node | edge | cost | agg_cost

-----+----------+-----------+------+------+------+----------
1 | 1 | 2 | 2 | 4 | 1 | 0
2 | 2 | 2 | 5 | -1 | 0 | 1
3 | 1 | 11 | 11 | 13 | 1 | 0
4 | 2 | 11 | 12 | 15 | 1 | 1
5 | 3 | 11 | 9 | 9 | 1 | 2

90 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

6 | 4 | 11 | 6 | 8 | 1 | 3
7 | 5 | 11 | 5 | -1 | 0 | 4

(7 rows)

pgr_dijkstra Many to Many
pgr_dijkstra(TEXT edges_sql, ARRAY[ANY_INTEGER] start_vids, ARRAY[ANY_INTEGER] end_vids,

BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) or EMPTY SET

This signature finds the shortest path from each start_vid in start_vids to each end_vid in end_vids:

• on a directed graph when directed flag is missing or is set to true.

• on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to Many pgr_dijkstra for all start_vids.

• The result is the union of the results of the one to one pgr_dijkstra.

• The extra start_vid in the result is used to distinguish to which path it belongs.

The extra start_vid and end_vid in the result is used to distinguish to which path it belongs.

Example

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2,11], ARRAY[3,5],
FALSE

);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

-----+----------+-----------+---------+------+------+------+----------
1 | 1 | 2 | 3 | 2 | 2 | 1 | 0
2 | 2 | 2 | 3 | 3 | -1 | 0 | 1
3 | 1 | 2 | 5 | 2 | 4 | 1 | 0
4 | 2 | 2 | 5 | 5 | -1 | 0 | 1
5 | 1 | 11 | 3 | 11 | 11 | 1 | 0
6 | 2 | 11 | 3 | 6 | 5 | 1 | 1
7 | 3 | 11 | 3 | 3 | -1 | 0 | 2
8 | 1 | 11 | 5 | 11 | 11 | 1 | 0
9 | 2 | 11 | 5 | 6 | 8 | 1 | 1
10 | 3 | 11 | 5 | 5 | -1 | 0 | 2

(10 rows)

Description of the Signatures

Description of the edges_sql query

edges_sql an SQL query, which should return a set of rows with the following columns:

6.1. Routing Functions 91

pgRouting Manual, Release 2.3.2 (master)

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end

point vertex of the edge.
target ANY-INTEGER Identifier of the second end

point vertex of the edge.
cost ANY-NUMERICAL

Weight of the edge (source, target)

• When neg-
ative: edge
(source, tar-
get) does not
exist, therefore
it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1
Weight of the edge (target, source),

• When nega-
tive: edge (tar-
get, source)
does not exist,
therefore it’s
not part of the
graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Column Type Default Description
sql TEXT SQL query as described

above.
start_vid BIGINT Identifier of the starting

vertex of the path.
start_vids ARRAY[BIGINT] Array of identifiers of

starting vertices.
end_vid BIGINT Identifier of the ending

vertex of the path.
end_vids ARRAY[BIGINT] Array of identifiers of end-

ing vertices.
directed BOOLEAN true

• When true Graph
is considered Di-
rected

• When false the
graph is considered
as Undirected.

Description of the return values Returns set of (seq, path_seq [, start_vid] [, end_vid],
node, edge, cost, agg_cost)

92 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

Col-
umn

Type Description

seq INT Sequential value starting from 1.
path_-
seq

INT Relative position in the path. Has value 1 for the beginning of a path.

start_-
vid

BIGINT Identifier of the starting vertex. Used when multiple starting vetrices are in the query.

end_-
vid

BIGINT Identifier of the ending vertex. Used when multiple ending vertices are in the query.

node BIGINT Identifier of the node in the path from start_vid to end_vid.
edge BIGINT Identifier of the edge used to go from node to the next node in the path sequence. -1 for

the last node of the path.
cost FLOAT Cost to traverse from node using edge to the next node in the path sequence.
agg_-
cost

FLOAT Aggregate cost from start_v to node.

Additional Examples

The examples of this section are based on the Sample Data network.

The examples include combinations from starting vertices 2 and 11 to ending vertices 3 and 5 in a directed and
undirected graph with and with out reverse_cost.

Examples for queries marked as directed with cost and reverse_cost columns The examples in
this section use the following Graph 1: Directed, with cost and reverse cost

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 3

);
seq | path_seq | node | edge | cost | agg_cost

-----+----------+------+------+------+----------
1 | 1 | 2 | 4 | 1 | 0
2 | 2 | 5 | 8 | 1 | 1
3 | 3 | 6 | 9 | 1 | 2
4 | 4 | 9 | 16 | 1 | 3
5 | 5 | 4 | 3 | 1 | 4
6 | 6 | 3 | -1 | 0 | 5

(6 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 5

);
seq | path_seq | node | edge | cost | agg_cost

-----+----------+------+------+------+----------
1 | 1 | 2 | 4 | 1 | 0
2 | 2 | 5 | -1 | 0 | 1

(2 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, ARRAY[3,5]

);
seq | path_seq | end_vid | node | edge | cost | agg_cost

-----+----------+---------+------+------+------+----------
1 | 1 | 3 | 2 | 4 | 1 | 0
2 | 2 | 3 | 5 | 8 | 1 | 1
3 | 3 | 3 | 6 | 9 | 1 | 2
4 | 4 | 3 | 9 | 16 | 1 | 3

6.1. Routing Functions 93

pgRouting Manual, Release 2.3.2 (master)

5 | 5 | 3 | 4 | 3 | 1 | 4
6 | 6 | 3 | 3 | -1 | 0 | 5
7 | 1 | 5 | 2 | 4 | 1 | 0
8 | 2 | 5 | 5 | -1 | 0 | 1

(8 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
11, 3

);
seq | path_seq | node | edge | cost | agg_cost

-----+----------+------+------+------+----------
1 | 1 | 11 | 13 | 1 | 0
2 | 2 | 12 | 15 | 1 | 1
3 | 3 | 9 | 16 | 1 | 2
4 | 4 | 4 | 3 | 1 | 3
5 | 5 | 3 | -1 | 0 | 4

(5 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
11, 5

);
seq | path_seq | node | edge | cost | agg_cost

-----+----------+------+------+------+----------
1 | 1 | 11 | 13 | 1 | 0
2 | 2 | 12 | 15 | 1 | 1
3 | 3 | 9 | 9 | 1 | 2
4 | 4 | 6 | 8 | 1 | 3
5 | 5 | 5 | -1 | 0 | 4

(5 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2,11], 5

);
seq | path_seq | start_vid | node | edge | cost | agg_cost

-----+----------+-----------+------+------+------+----------
1 | 1 | 2 | 2 | 4 | 1 | 0
2 | 2 | 2 | 5 | -1 | 0 | 1
3 | 1 | 11 | 11 | 13 | 1 | 0
4 | 2 | 11 | 12 | 15 | 1 | 1
5 | 3 | 11 | 9 | 9 | 1 | 2
6 | 4 | 11 | 6 | 8 | 1 | 3
7 | 5 | 11 | 5 | -1 | 0 | 4

(7 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2, 11], ARRAY[3,5]

);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

-----+----------+-----------+---------+------+------+------+----------
1 | 1 | 2 | 3 | 2 | 4 | 1 | 0
2 | 2 | 2 | 3 | 5 | 8 | 1 | 1
3 | 3 | 2 | 3 | 6 | 9 | 1 | 2
4 | 4 | 2 | 3 | 9 | 16 | 1 | 3
5 | 5 | 2 | 3 | 4 | 3 | 1 | 4
6 | 6 | 2 | 3 | 3 | -1 | 0 | 5
7 | 1 | 2 | 5 | 2 | 4 | 1 | 0
8 | 2 | 2 | 5 | 5 | -1 | 0 | 1
9 | 1 | 11 | 3 | 11 | 13 | 1 | 0
10 | 2 | 11 | 3 | 12 | 15 | 1 | 1

94 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

11 | 3 | 11 | 3 | 9 | 16 | 1 | 2
12 | 4 | 11 | 3 | 4 | 3 | 1 | 3
13 | 5 | 11 | 3 | 3 | -1 | 0 | 4
14 | 1 | 11 | 5 | 11 | 13 | 1 | 0
15 | 2 | 11 | 5 | 12 | 15 | 1 | 1
16 | 3 | 11 | 5 | 9 | 9 | 1 | 2
17 | 4 | 11 | 5 | 6 | 8 | 1 | 3
18 | 5 | 11 | 5 | 5 | -1 | 0 | 4

(18 rows)

Examples for queries marked as undirected with cost and reverse_cost columns The examples in
this section use the following Graph 2: Undirected, with cost and reverse cost

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 3,
FALSE

);
seq | path_seq | node | edge | cost | agg_cost

-----+----------+------+------+------+----------
1 | 1 | 2 | 2 | 1 | 0
2 | 2 | 3 | -1 | 0 | 1

(2 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 5,
FALSE

);
seq | path_seq | node | edge | cost | agg_cost

-----+----------+------+------+------+----------
1 | 1 | 2 | 4 | 1 | 0
2 | 2 | 5 | -1 | 0 | 1

(2 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
11, 3,
FALSE

);
seq | path_seq | node | edge | cost | agg_cost

-----+----------+------+------+------+----------
1 | 1 | 11 | 11 | 1 | 0
2 | 2 | 6 | 5 | 1 | 1
3 | 3 | 3 | -1 | 0 | 2

(3 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
11, 5,
FALSE

);
seq | path_seq | node | edge | cost | agg_cost

-----+----------+------+------+------+----------
1 | 1 | 11 | 11 | 1 | 0
2 | 2 | 6 | 8 | 1 | 1
3 | 3 | 5 | -1 | 0 | 2

(3 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

6.1. Routing Functions 95

pgRouting Manual, Release 2.3.2 (master)

ARRAY[2,11], 5,
FALSE

);
seq | path_seq | start_vid | node | edge | cost | agg_cost

-----+----------+-----------+------+------+------+----------
1 | 1 | 2 | 2 | 4 | 1 | 0
2 | 2 | 2 | 5 | -1 | 0 | 1
3 | 1 | 11 | 11 | 11 | 1 | 0
4 | 2 | 11 | 6 | 8 | 1 | 1
5 | 3 | 11 | 5 | -1 | 0 | 2

(5 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, ARRAY[3,5],
FALSE

);
seq | path_seq | end_vid | node | edge | cost | agg_cost

-----+----------+---------+------+------+------+----------
1 | 1 | 3 | 2 | 2 | 1 | 0
2 | 2 | 3 | 3 | -1 | 0 | 1
3 | 1 | 5 | 2 | 4 | 1 | 0
4 | 2 | 5 | 5 | -1 | 0 | 1

(4 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2, 11], ARRAY[3,5],
FALSE

);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

-----+----------+-----------+---------+------+------+------+----------
1 | 1 | 2 | 3 | 2 | 2 | 1 | 0
2 | 2 | 2 | 3 | 3 | -1 | 0 | 1
3 | 1 | 2 | 5 | 2 | 4 | 1 | 0
4 | 2 | 2 | 5 | 5 | -1 | 0 | 1
5 | 1 | 11 | 3 | 11 | 11 | 1 | 0
6 | 2 | 11 | 3 | 6 | 5 | 1 | 1
7 | 3 | 11 | 3 | 3 | -1 | 0 | 2
8 | 1 | 11 | 5 | 11 | 11 | 1 | 0
9 | 2 | 11 | 5 | 6 | 8 | 1 | 1
10 | 3 | 11 | 5 | 5 | -1 | 0 | 2

(10 rows)

Examples for queries marked as directed with cost column The examples in this section use the follow-
ing Graph 3: Directed, with cost

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
2, 3

);
seq | path_seq | node | edge | cost | agg_cost

-----+----------+------+------+------+----------
(0 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
2, 5

);
seq | path_seq | node | edge | cost | agg_cost

-----+----------+------+------+------+----------

96 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

1 | 1 | 2 | 4 | 1 | 0
2 | 2 | 5 | -1 | 0 | 1

(2 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
11, 3

);
seq | path_seq | node | edge | cost | agg_cost

-----+----------+------+------+------+----------
(0 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
11, 5

);
seq | path_seq | node | edge | cost | agg_cost

-----+----------+------+------+------+----------
(0 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
ARRAY[2,11], 5

);
seq | path_seq | start_vid | node | edge | cost | agg_cost

-----+----------+-----------+------+------+------+----------
1 | 1 | 2 | 2 | 4 | 1 | 0
2 | 2 | 2 | 5 | -1 | 0 | 1

(2 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
2, ARRAY[3,5]

);
seq | path_seq | end_vid | node | edge | cost | agg_cost

-----+----------+---------+------+------+------+----------
1 | 1 | 5 | 2 | 4 | 1 | 0
2 | 2 | 5 | 5 | -1 | 0 | 1

(2 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
ARRAY[2, 11], ARRAY[3,5]

);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

-----+----------+-----------+---------+------+------+------+----------
1 | 1 | 2 | 5 | 2 | 4 | 1 | 0
2 | 2 | 2 | 5 | 5 | -1 | 0 | 1

(2 rows)

Examples for queries marked as undirected with cost column The examples in this section use the
following Graph 4: Undirected, with cost

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
2, 3,
FALSE

);
seq | path_seq | node | edge | cost | agg_cost

-----+----------+------+------+------+----------
1 | 1 | 2 | 4 | 1 | 0

6.1. Routing Functions 97

pgRouting Manual, Release 2.3.2 (master)

2 | 2 | 5 | 8 | 1 | 1
3 | 3 | 6 | 5 | 1 | 2
4 | 4 | 3 | -1 | 0 | 3

(4 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
2, 5,
FALSE

);
seq | path_seq | node | edge | cost | agg_cost

-----+----------+------+------+------+----------
1 | 1 | 2 | 4 | 1 | 0
2 | 2 | 5 | -1 | 0 | 1

(2 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
11, 3,
FALSE

);
seq | path_seq | node | edge | cost | agg_cost

-----+----------+------+------+------+----------
1 | 1 | 11 | 11 | 1 | 0
2 | 2 | 6 | 5 | 1 | 1
3 | 3 | 3 | -1 | 0 | 2

(3 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
11, 5,
FALSE

);
seq | path_seq | node | edge | cost | agg_cost

-----+----------+------+------+------+----------
1 | 1 | 11 | 11 | 1 | 0
2 | 2 | 6 | 8 | 1 | 1
3 | 3 | 5 | -1 | 0 | 2

(3 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
ARRAY[2,11], 5,
FALSE

);
seq | path_seq | start_vid | node | edge | cost | agg_cost

-----+----------+-----------+------+------+------+----------
1 | 1 | 2 | 2 | 4 | 1 | 0
2 | 2 | 2 | 5 | -1 | 0 | 1
3 | 1 | 11 | 11 | 11 | 1 | 0
4 | 2 | 11 | 6 | 8 | 1 | 1
5 | 3 | 11 | 5 | -1 | 0 | 2

(5 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
2, ARRAY[3,5],
FALSE

);
seq | path_seq | end_vid | node | edge | cost | agg_cost

-----+----------+---------+------+------+------+----------
1 | 1 | 3 | 2 | 4 | 1 | 0
2 | 2 | 3 | 5 | 8 | 1 | 1

98 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

3 | 3 | 3 | 6 | 5 | 1 | 2
4 | 4 | 3 | 3 | -1 | 0 | 3
5 | 1 | 5 | 2 | 4 | 1 | 0
6 | 2 | 5 | 5 | -1 | 0 | 1

(6 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
ARRAY[2, 11], ARRAY[3,5],
FALSE

);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

-----+----------+-----------+---------+------+------+------+----------
1 | 1 | 2 | 3 | 2 | 4 | 1 | 0
2 | 2 | 2 | 3 | 5 | 8 | 1 | 1
3 | 3 | 2 | 3 | 6 | 5 | 1 | 2
4 | 4 | 2 | 3 | 3 | -1 | 0 | 3
5 | 1 | 2 | 5 | 2 | 4 | 1 | 0
6 | 2 | 2 | 5 | 5 | -1 | 0 | 1
7 | 1 | 11 | 3 | 11 | 11 | 1 | 0
8 | 2 | 11 | 3 | 6 | 5 | 1 | 1
9 | 3 | 11 | 3 | 3 | -1 | 0 | 2
10 | 1 | 11 | 5 | 11 | 11 | 1 | 0
11 | 2 | 11 | 5 | 6 | 8 | 1 | 1
12 | 3 | 11 | 5 | 5 | -1 | 0 | 2

(12 rows)

Equvalences between signatures

Examples For queries marked as directed with cost and reverse_cost columns

The examples in this section use the following:

• Graph 1: Directed, with cost and reverse cost

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 3,
TRUE

);
seq | path_seq | node | edge | cost | agg_cost

-----+----------+------+------+------+----------
1 | 1 | 2 | 4 | 1 | 0
2 | 2 | 5 | 8 | 1 | 1
3 | 3 | 6 | 9 | 1 | 2
4 | 4 | 9 | 16 | 1 | 3
5 | 5 | 4 | 3 | 1 | 4
6 | 6 | 3 | -1 | 0 | 5

(6 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2,3

);
seq | path_seq | node | edge | cost | agg_cost

-----+----------+------+------+------+----------
1 | 1 | 2 | 4 | 1 | 0
2 | 2 | 5 | 8 | 1 | 1
3 | 3 | 6 | 9 | 1 | 2
4 | 4 | 9 | 16 | 1 | 3
5 | 5 | 4 | 3 | 1 | 4
6 | 6 | 3 | -1 | 0 | 5

6.1. Routing Functions 99

pgRouting Manual, Release 2.3.2 (master)

(6 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, ARRAY[3],
TRUE

);
seq | path_seq | end_vid | node | edge | cost | agg_cost

-----+----------+---------+------+------+------+----------
1 | 1 | 3 | 2 | 4 | 1 | 0
2 | 2 | 3 | 5 | 8 | 1 | 1
3 | 3 | 3 | 6 | 9 | 1 | 2
4 | 4 | 3 | 9 | 16 | 1 | 3
5 | 5 | 3 | 4 | 3 | 1 | 4
6 | 6 | 3 | 3 | -1 | 0 | 5

(6 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, ARRAY[3]

);
seq | path_seq | end_vid | node | edge | cost | agg_cost

-----+----------+---------+------+------+------+----------
1 | 1 | 3 | 2 | 4 | 1 | 0
2 | 2 | 3 | 5 | 8 | 1 | 1
3 | 3 | 3 | 6 | 9 | 1 | 2
4 | 4 | 3 | 9 | 16 | 1 | 3
5 | 5 | 3 | 4 | 3 | 1 | 4
6 | 6 | 3 | 3 | -1 | 0 | 5

(6 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2], ARRAY[3],
TRUE

);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

-----+----------+-----------+---------+------+------+------+----------
1 | 1 | 2 | 3 | 2 | 4 | 1 | 0
2 | 2 | 2 | 3 | 5 | 8 | 1 | 1
3 | 3 | 2 | 3 | 6 | 9 | 1 | 2
4 | 4 | 2 | 3 | 9 | 16 | 1 | 3
5 | 5 | 2 | 3 | 4 | 3 | 1 | 4
6 | 6 | 2 | 3 | 3 | -1 | 0 | 5

(6 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2], ARRAY[3]

);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

-----+----------+-----------+---------+------+------+------+----------
1 | 1 | 2 | 3 | 2 | 4 | 1 | 0
2 | 2 | 2 | 3 | 5 | 8 | 1 | 1
3 | 3 | 2 | 3 | 6 | 9 | 1 | 2
4 | 4 | 2 | 3 | 9 | 16 | 1 | 3
5 | 5 | 2 | 3 | 4 | 3 | 1 | 4
6 | 6 | 2 | 3 | 3 | -1 | 0 | 5

(6 rows)

SET client_min_messages TO NOTICE;
SET
SELECT * FROM pgr_dijkstra(

100 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table',
2, 3,
TRUE,
TRUE

);
NOTICE: Deprecated function
seq | id1 | id2 | cost

-----+-----+-----+------
0 | 2 | 4 | 1
1 | 5 | 8 | 1
2 | 6 | 9 | 1
3 | 9 | 16 | 1
4 | 4 | 3 | 1
5 | 3 | -1 | 0

(6 rows)

Examples For queries marked as undirected with cost and reverse_cost columns

The examples in this section use the following:

• Graph 2: Undirected, with cost and reverse cost

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 3,
FALSE

);
seq | path_seq | node | edge | cost | agg_cost

-----+----------+------+------+------+----------
1 | 1 | 2 | 2 | 1 | 0
2 | 2 | 3 | -1 | 0 | 1

(2 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, ARRAY[3],
FALSE

);
seq | path_seq | end_vid | node | edge | cost | agg_cost

-----+----------+---------+------+------+------+----------
1 | 1 | 3 | 2 | 2 | 1 | 0
2 | 2 | 3 | 3 | -1 | 0 | 1

(2 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2], 3,
FALSE

);
seq | path_seq | start_vid | node | edge | cost | agg_cost

-----+----------+-----------+------+------+------+----------
1 | 1 | 2 | 2 | 2 | 1 | 0
2 | 2 | 2 | 3 | -1 | 0 | 1

(2 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2], ARRAY[3],
FALSE

);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

-----+----------+-----------+---------+------+------+------+----------
1 | 1 | 2 | 3 | 2 | 2 | 1 | 0

6.1. Routing Functions 101

pgRouting Manual, Release 2.3.2 (master)

2 | 2 | 2 | 3 | 3 | -1 | 0 | 1
(2 rows)

SET client_min_messages TO NOTICE;
SET
SELECT * FROM pgr_dijkstra(

'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table',
2, 3,
FALSE,
TRUE

);
NOTICE: Deprecated function
seq | id1 | id2 | cost

-----+-----+-----+------
0 | 2 | 2 | 1
1 | 3 | -1 | 0

(2 rows)

History

• Added functionality in version 2.1.0

• Renamed in version 2.0.0

See Also

• http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

• The queries use the Sample Data network.

Indices and tables

• genindex

• search

pgr_dijkstraCost

Synopsis

pgr_dijkstraCost

Using Dijkstra algorithm implemented by Boost.Graph, and extract only the aggregate cost of the shortest path(s)
found, for the combination of vertices given.

8

Fig. 6.5: Boost Graph Inside

The pgr_dijkstraCost algorithm, is a good choice to calculate the sum of the costs of the shortest path for
a subset of pairs of nodes of the graph. We make use of the Boost’s implementation of dijkstra which runs in
𝑂(𝑉 log 𝑉 + 𝐸) time.

102 Chapter 6. Routing Functions

http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html

pgRouting Manual, Release 2.3.2 (master)

Characteristics

The main Characteristics are:

• It does not return a path.

• Returns the sum of the costs of the shortest path for pair combination of nodes in the graph.

• Process is done only on edges with positive costs.

• Values are returned when there is a path.

– The returned values are in the form of a set of (start_vid, end_vid, agg_cost).

– When the starting vertex and ending vertex are the same, there is no path.

* The agg_cost int the non included values (v, v) is 0

– When the starting vertex and ending vertex are the different and there is no path.

* The agg_cost in the non included values (u, v) is ∞

• Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_-
vid, end_vid).

• For undirected graphs, the results are symmetric.

– The agg_cost of (u, v) is the same as for (v, u).

• Any duplicated value in the start_vids or end_vids is ignored.

• The returned values are ordered:

– start_vid ascending

– end_vid ascending

• Running time: 𝑂(|𝑠𝑡𝑎𝑟𝑡_𝑣𝑖𝑑𝑠| * (𝑉 log 𝑉 + 𝐸))

Signature Summary

pgr_dijkstraCost(edges_sql, start_vid, end_vid);
pgr_dijkstraCost(edges_sql, start_vid, end_vid, directed);
pgr_dijkstraCost(edges_sql, start_vids, end_vid, directed);
pgr_dijkstraCost(edges_sql, start_vid, end_vids, directed);
pgr_dijkstraCost(edges_sql, start_vids, end_vids, directed);

RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

Signatures

Minimal signature The minimal signature is for a directed graph from one start_vid to one end_vid:

pgr_dijkstraCost(TEXT edges_sql, BIGINT start_vid, BIGINT end_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

Example

SELECT * FROM pgr_dijkstraCost(
'select id, source, target, cost, reverse_cost from edge_table',
2, 3);

start_vid | end_vid | agg_cost
-----------+---------+----------

2 | 3 | 5

6.1. Routing Functions 103

pgRouting Manual, Release 2.3.2 (master)

(1 row)

pgr_dijkstraCost One to One

This signature performs a Dijkstra from one start_vid to one end_vid:

• on a directed graph when directed flag is missing or is set to true.

• on an undirected graph when directed flag is set to false.

pgr_dijkstraCost(TEXT edges_sql, BIGINT start_vid, BIGINT end_vid,
BOOLEAN directed:=true);

RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

Example

SELECT * FROM pgr_dijkstraCost(
'select id, source, target, cost, reverse_cost from edge_table',
2, 3, false);

start_vid | end_vid | agg_cost
-----------+---------+----------

2 | 3 | 1
(1 row)

pgr_dijkstraCost One to Many
pgr_dijkstraCost(TEXT edges_sql, BIGINT start_vid, array[ANY_INTEGER] end_vids,

BOOLEAN directed:=true);
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

This signature performs a Dijkstra from one start_vid to each end_vid in end_vids:

• on a directed graph when directed flag is missing or is set to true.

• on an undirected graph when directed flag is set to false.

Example

SELECT * FROM pgr_dijkstraCost(
'select id, source, target, cost, reverse_cost from edge_table',
2, ARRAY[3, 11]);

start_vid | end_vid | agg_cost
-----------+---------+----------

2 | 3 | 5
2 | 11 | 3

(2 rows)

pgr_dijkstraCost Many to One
pgr_dijkstraCost(TEXT edges_sql, array[ANY_INTEGER] start_vids, BIGINT end_vid,

BOOLEAN directed:=true);
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

This signature performs a Dijkstra from each start_vid in start_vids to one end_vid:

• on a directed graph when directed flag is missing or is set to true.

• on an undirected graph when directed flag is set to false.

Example

104 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

SELECT * FROM pgr_dijkstraCost(
'select id, source, target, cost, reverse_cost from edge_table',
ARRAY[2, 7], 3);

start_vid | end_vid | agg_cost
-----------+---------+----------

2 | 3 | 5
7 | 3 | 6

(2 rows)

pgr_dijkstraCost Many to Many
pgr_dijkstraCost(TEXT edges_sql, array[ANY_INTEGER] start_vids, array[ANY_INTEGER] end_vids,

BOOLEAN directed:=true);
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

This signature performs a Dijkstra from each start_vid in start_vids to each end_vid in end_vids:

• on a directed graph when directed flag is missing or is set to true.

• on an undirected graph when directed flag is set to false.

Example

SELECT * FROM pgr_dijkstraCost(
'select id, source, target, cost, reverse_cost from edge_table',
ARRAY[2, 7], ARRAY[3, 11]);

start_vid | end_vid | agg_cost
-----------+---------+----------

2 | 3 | 5
2 | 11 | 3
7 | 3 | 6
7 | 11 | 4

(4 rows)

Description of the Signatures

Description of the edges_sql query

edges_sql an SQL query, which should return a set of rows with the following columns:

6.1. Routing Functions 105

pgRouting Manual, Release 2.3.2 (master)

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end

point vertex of the edge.
target ANY-INTEGER Identifier of the second end

point vertex of the edge.
cost ANY-NUMERICAL

Weight of the edge (source, target)

• When neg-
ative: edge
(source, tar-
get) does not
exist, therefore
it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1
Weight of the edge (target, source),

• When nega-
tive: edge (tar-
get, source)
does not exist,
therefore it’s
not part of the
graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Column Type Default Description
sql TEXT SQL query as described

above.
start_vid BIGINT Identifier of the starting

vertex of the path.
start_vids ARRAY[BIGINT] Array of identifiers of

starting vertices.
end_vid BIGINT Identifier of the ending

vertex of the path.
end_vids ARRAY[BIGINT] Array of identifiers of end-

ing vertices.
directed BOOLEAN true

• When true Graph
is considered Di-
rected

• When false the
graph is considered
as Undirected.

Description of the return values Returns set of (start_vid, end_vid, agg_cost)

106 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

Column Type Description
start_vid BIGINT Identifier of the starting vertex.
end_vid BIGINT Identifier of the ending vertex.
agg_cost FLOAT Aggregate cost of the shortest path from start_vid to end_vid.

Additional Examples

Example 1 Demonstration of repeated values are ignored, and result is sorted.

SELECT * FROM pgr_dijkstraCost(
'select id, source, target, cost, reverse_cost from edge_table',

ARRAY[5, 3, 4, 3, 3, 4], ARRAY[3, 5, 3, 4]);
start_vid | end_vid | agg_cost

-----------+---------+----------
3 | 4 | 3
3 | 5 | 2
4 | 3 | 1
4 | 5 | 3
5 | 3 | 4
5 | 4 | 3

(6 rows)

Example 2 Making start_vids the same as end_vids

SELECT * FROM pgr_dijkstraCost(
'select id, source, target, cost, reverse_cost from edge_table',

ARRAY[5, 3, 4], ARRAY[5, 3, 4]);
start_vid | end_vid | agg_cost

-----------+---------+----------
3 | 4 | 3
3 | 5 | 2
4 | 3 | 1
4 | 5 | 3
5 | 3 | 4
5 | 4 | 3

(6 rows)

History

• New in version 2.2.0

See Also

• http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

• Sample Data network.

Indices and tables

• genindex

• search

6.1. Routing Functions 107

http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

pgRouting Manual, Release 2.3.2 (master)

The problem definition (Advanced documentation)

Given the following query:

pgr_dijkstra(𝑠𝑞𝑙, 𝑠𝑡𝑎𝑟𝑡𝑣𝑖𝑑, 𝑒𝑛𝑑𝑣𝑖𝑑, 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑)

where 𝑠𝑞𝑙 = {(𝑖𝑑𝑖, 𝑠𝑜𝑢𝑟𝑐𝑒𝑖, 𝑡𝑎𝑟𝑔𝑒𝑡𝑖, 𝑐𝑜𝑠𝑡𝑖, 𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑐𝑜𝑠𝑡𝑖)}

and

• 𝑠𝑜𝑢𝑟𝑐𝑒 =
⋃︀
𝑠𝑜𝑢𝑟𝑐𝑒𝑖,

• 𝑡𝑎𝑟𝑔𝑒𝑡 =
⋃︀
𝑡𝑎𝑟𝑔𝑒𝑡𝑖,

The graphs are defined as follows:

Directed graph

The weighted directed graph, 𝐺𝑑(𝑉,𝐸), is definied by:

• the set of vertices 𝑉

– 𝑉 = 𝑠𝑜𝑢𝑟𝑐𝑒 ∪ 𝑡𝑎𝑟𝑔𝑒𝑡 ∪ 𝑠𝑡𝑎𝑟𝑡𝑣𝑖𝑑 ∪ 𝑒𝑛𝑑𝑣𝑖𝑑

• the set of edges 𝐸

– 𝐸 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(𝑠𝑜𝑢𝑟𝑐𝑒𝑖, 𝑡𝑎𝑟𝑔𝑒𝑡𝑖, 𝑐𝑜𝑠𝑡𝑖) when 𝑐𝑜𝑠𝑡 >= 0}
if 𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑐𝑜𝑠𝑡 =

{(𝑠𝑜𝑢𝑟𝑐𝑒𝑖, 𝑡𝑎𝑟𝑔𝑒𝑡𝑖, 𝑐𝑜𝑠𝑡𝑖) when 𝑐𝑜𝑠𝑡 >= 0}
∪ {(𝑡𝑎𝑟𝑔𝑒𝑡𝑖, 𝑠𝑜𝑢𝑟𝑐𝑒𝑖, 𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑐𝑜𝑠𝑡𝑖) when 𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑐𝑜𝑠𝑡𝑖 >= 0)}

if 𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑐𝑜𝑠𝑡 ̸=

Undirected graph

The weighted undirected graph, 𝐺𝑢(𝑉,𝐸), is definied by:

• the set of vertices 𝑉

– 𝑉 = 𝑠𝑜𝑢𝑟𝑐𝑒 ∪ 𝑡𝑎𝑟𝑔𝑒𝑡 ∪ 𝑠𝑡𝑎𝑟𝑡𝑣𝑣𝑖𝑑 ∪ 𝑒𝑛𝑑𝑣𝑖𝑑

• the set of edges 𝐸

– 𝐸 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(𝑠𝑜𝑢𝑟𝑐𝑒𝑖, 𝑡𝑎𝑟𝑔𝑒𝑡𝑖, 𝑐𝑜𝑠𝑡𝑖) when 𝑐𝑜𝑠𝑡 >= 0}
∪ {(𝑡𝑎𝑟𝑔𝑒𝑡𝑖, 𝑠𝑜𝑢𝑟𝑐𝑒𝑖, 𝑐𝑜𝑠𝑡𝑖) when 𝑐𝑜𝑠𝑡 >= 0}

if 𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑐𝑜𝑠𝑡 =

{(𝑠𝑜𝑢𝑟𝑐𝑒𝑖, 𝑡𝑎𝑟𝑔𝑒𝑡𝑖, 𝑐𝑜𝑠𝑡𝑖) when 𝑐𝑜𝑠𝑡 >= 0}
∪ {(𝑡𝑎𝑟𝑔𝑒𝑡𝑖, 𝑠𝑜𝑢𝑟𝑐𝑒𝑖, 𝑐𝑜𝑠𝑡𝑖) when 𝑐𝑜𝑠𝑡 >= 0}
∪ {(𝑡𝑎𝑟𝑔𝑒𝑡𝑖, 𝑠𝑜𝑢𝑟𝑐𝑒𝑖, 𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑐𝑜𝑠𝑡𝑖) when 𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑐𝑜𝑠𝑡𝑖 >= 0)}
∪ {(𝑠𝑜𝑢𝑟𝑐𝑒𝑖, 𝑡𝑎𝑟𝑔𝑒𝑡𝑖, 𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑐𝑜𝑠𝑡𝑖) when 𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑐𝑜𝑠𝑡𝑖 >= 0)}

if 𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑐𝑜𝑠𝑡 ̸=

The problem

Given:

• 𝑠𝑡𝑎𝑟𝑡𝑣𝑖𝑑 ∈ 𝑉 a starting vertex

• 𝑒𝑛𝑑𝑣𝑖𝑑 ∈ 𝑉 an ending vertex

108 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

• 𝐺(𝑉,𝐸) =

{︃
𝐺𝑑(𝑉,𝐸) if 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑡𝑟𝑢𝑒

𝐺𝑢(𝑉,𝐸) if 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑓𝑎𝑙𝑠𝑒

Then:

pgr_dijkstra(𝑠𝑞𝑙, 𝑠𝑡𝑎𝑟𝑡𝑣𝑖𝑑, 𝑒𝑛𝑑𝑣𝑖𝑑, 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑) =

{︃
shortest path 𝜋 between 𝑠𝑡𝑎𝑟𝑡𝑣𝑖𝑑and 𝑒𝑛𝑑𝑣𝑖𝑑 if ∃𝜋

otherwise

𝜋 = {(𝑝𝑎𝑡ℎ
𝑖,𝑛𝑜𝑑𝑒𝑖,𝑒𝑑𝑔𝑒𝑖,𝑐𝑜𝑠𝑡𝑖,𝑎𝑔𝑔_𝑐𝑜𝑠𝑡𝑖)}

where:

• 𝑝𝑎𝑡ℎ
𝑖=𝑖

• 𝑝𝑎𝑡ℎ|𝜋|=|𝜋|

• 𝑛𝑜𝑑𝑒𝑖 ∈ 𝑉

• 𝑛𝑜𝑑𝑒1 = 𝑠𝑡𝑎𝑟𝑡𝑣𝑖𝑑

• 𝑛𝑜𝑑𝑒|𝜋| = 𝑒𝑛𝑑𝑣𝑖𝑑

• ∀𝑖 ̸= |𝜋|, (𝑛𝑜𝑑𝑒𝑖, 𝑛𝑜𝑑𝑒𝑖+1, 𝑐𝑜𝑠𝑡𝑖) ∈ 𝐸

• 𝑒𝑑𝑔𝑒𝑖 =

{︃
𝑖𝑑(𝑛𝑜𝑑𝑒𝑖,𝑛𝑜𝑑𝑒𝑖+1,𝑐𝑜𝑠𝑡𝑖) when 𝑖 ̸= |𝜋|
−1 when 𝑖 = |𝜋|

• 𝑐𝑜𝑠𝑡𝑖 = 𝑐𝑜𝑠𝑡(𝑛𝑜𝑑𝑒𝑖,𝑛𝑜𝑑𝑒𝑖+1)

• 𝑎𝑔𝑔_𝑐𝑜𝑠𝑡𝑖 =

⎧⎪⎨⎪⎩
0 when 𝑖 = 1
𝑖∑︁

𝑘=1

𝑐𝑜𝑠𝑡(𝑛𝑜𝑑𝑒𝑘−1,𝑛𝑜𝑑𝑒𝑘) when 𝑖 ̸= 1

In other words: The algorithm returns a the shortest path between 𝑠𝑡𝑎𝑟𝑡𝑣𝑖𝑑 and 𝑒𝑛𝑑𝑣𝑖𝑑 , if it exists, in terms of a sequence of nodes and of edges,

• 𝑝𝑎𝑡ℎ indicates the relative position in the path of the 𝑛𝑜𝑑𝑒 or 𝑒𝑑𝑔𝑒.

• 𝑐𝑜𝑠𝑡 is the cost of the edge to be used to go to the next node.

• 𝑎𝑔𝑔_𝑐𝑜𝑠𝑡 is the cost from the 𝑠𝑡𝑎𝑟𝑡𝑣𝑖𝑑 up to the node.

If there is no path, the resulting set is empty.

6.1.6 Driving Distance

• pgr_drivingDistance - Driving Distance based on pgr_dijkstra

pgr_drivingDistance

Name

pgr_drivingDistance - Returns the driving distance from a start node.

9

Fig. 6.6: Boost Graph Inside

6.1. Routing Functions 109

http://www.boost.org/libs/graph

pgRouting Manual, Release 2.3.2 (master)

Synopsis

Using Dijkstra algorithm, extracts all the nodes that have costs less than or equal to the value distance. The
edges extracted will conform the corresponding spanning tree.

Signature Summary

pgr_drivingDistance(edges_sql, start_vid, distance)
pgr_drivingDistance(edges_sql, start_vid, distance, directed)
pgr_drivingDistance(edges_sql, start_vids, distance, directed, equicost)

RETURNS SET OF (seq, [start_vid,] node, edge, cost, agg_cost)

Signatures

Minimal Use
pgr_drivingDistance(edges_sql, start_vid, distance)
RETURNS SET OF (seq, node, edge, cost, agg_cost)

Driving Distance From A Single Starting Vertex
pgr_drivingDistance(edges_sql, start_vid, distance, directed)
RETURNS SET OF (seq, node, edge, cost, agg_cost)

Driving Distance From Multiple Starting Vertices
pgr_drivingDistance(edges_sql, start_vids, distance, directed, equicost)
RETURNS SET OF (seq, start_vid, node, edge, cost, agg_cost)

Description of the Signatures

Description of the edges_sql query

edges_sql an SQL query, which should return a set of rows with the following columns:

110 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end

point vertex of the edge.
target ANY-INTEGER Identifier of the second end

point vertex of the edge.
cost ANY-NUMERICAL

Weight of the edge (source, target)

• When neg-
ative: edge
(source, tar-
get) does not
exist, therefore
it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1
Weight of the edge (target, source),

• When nega-
tive: edge (tar-
get, source)
does not exist,
therefore it’s
not part of the
graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Col-
umn

Type Description

edges_-
sql

TEXT SQL query as described above.

start_-
vid

BIGINT Identifier of the starting vertex.

start_-
vids

ARRAY[ANY-INTEGER]Array of identifiers of starting vertices.

dis-
tance

FLOAT Upper limit for the inclusion of the node in the result.

di-
rected

BOOLEAN (optional). When false the graph is considered as Undirected. Default is true
which considers the graph as Directed.

equicostBOOLEAN (optional). When true the node will only appear in the closest start_vid list.
Default is false which resembles several calls using the single starting point
signatures. Tie brakes are arbitrarely.

Description of the return values Returns set of (seq [, start_v], node, edge, cost, agg_-
cost)

6.1. Routing Functions 111

pgRouting Manual, Release 2.3.2 (master)

Column Type Description
seq INTEGER Sequential value starting from 1.
start_vid INTEGER Identifier of the starting vertex.
node BIGINT Identifier of the node in the path within the limits from start_vid.
edge BIGINT Identifier of the edge used to arrive to node. 0 when the node is the start_vid.
cost FLOAT Cost to traverse edge.
agg_cost FLOAT Aggregate cost from start_vid to node.

Additional Examples

Examples for queries marked as directed with cost and reverse_cost columns The examples in
this section use the following Graph 1: Directed, with cost and reverse cost

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 3

);
seq | node | edge | cost | agg_cost

-----+------+------+------+----------
1 | 2 | -1 | 0 | 0
2 | 1 | 1 | 1 | 1
3 | 5 | 4 | 1 | 1
4 | 6 | 8 | 1 | 2
5 | 8 | 7 | 1 | 2
6 | 10 | 10 | 1 | 2
7 | 7 | 6 | 1 | 3
8 | 9 | 9 | 1 | 3
9 | 11 | 12 | 1 | 3
10 | 13 | 14 | 1 | 3

(10 rows)

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
13, 3

);
seq | node | edge | cost | agg_cost

-----+------+------+------+----------
1 | 13 | -1 | 0 | 0
2 | 10 | 14 | 1 | 1
3 | 5 | 10 | 1 | 2
4 | 11 | 12 | 1 | 2
5 | 2 | 4 | 1 | 3
6 | 6 | 8 | 1 | 3
7 | 8 | 7 | 1 | 3
8 | 12 | 13 | 1 | 3

(8 rows)

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
array[2,13], 3

);
seq | from_v | node | edge | cost | agg_cost

-----+--------+------+------+------+----------
1 | 2 | 2 | -1 | 0 | 0
2 | 2 | 1 | 1 | 1 | 1
3 | 2 | 5 | 4 | 1 | 1
4 | 2 | 6 | 8 | 1 | 2
5 | 2 | 8 | 7 | 1 | 2
6 | 2 | 10 | 10 | 1 | 2
7 | 2 | 7 | 6 | 1 | 3
8 | 2 | 9 | 9 | 1 | 3

112 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

9 | 2 | 11 | 12 | 1 | 3
10 | 2 | 13 | 14 | 1 | 3
11 | 13 | 13 | -1 | 0 | 0
12 | 13 | 10 | 14 | 1 | 1
13 | 13 | 5 | 10 | 1 | 2
14 | 13 | 11 | 12 | 1 | 2
15 | 13 | 2 | 4 | 1 | 3
16 | 13 | 6 | 8 | 1 | 3
17 | 13 | 8 | 7 | 1 | 3
18 | 13 | 12 | 13 | 1 | 3

(18 rows)

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
array[2,13], 3, equicost:=true

);
seq | from_v | node | edge | cost | agg_cost

-----+--------+------+------+------+----------
1 | 2 | 2 | -1 | 0 | 0
2 | 2 | 1 | 1 | 1 | 1
3 | 2 | 5 | 4 | 1 | 1
4 | 2 | 6 | 8 | 1 | 2
5 | 2 | 8 | 7 | 1 | 2
6 | 2 | 7 | 6 | 1 | 3
7 | 2 | 9 | 9 | 1 | 3
8 | 13 | 13 | -1 | 0 | 0
9 | 13 | 10 | 14 | 1 | 1
10 | 13 | 11 | 12 | 1 | 2
11 | 13 | 12 | 13 | 1 | 3

(11 rows)

Examples for queries marked as undirected with cost and reverse_cost columns The examples in
this section use the following Graph 2: Undirected, with cost and reverse cost

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 3, false

);
seq | node | edge | cost | agg_cost

-----+------+------+------+----------
1 | 2 | -1 | 0 | 0
2 | 1 | 1 | 1 | 1
3 | 3 | 2 | 1 | 1
4 | 5 | 4 | 1 | 1
5 | 4 | 3 | 1 | 2
6 | 6 | 8 | 1 | 2
7 | 8 | 7 | 1 | 2
8 | 10 | 10 | 1 | 2
9 | 7 | 6 | 1 | 3
10 | 9 | 16 | 1 | 3
11 | 11 | 12 | 1 | 3
12 | 13 | 14 | 1 | 3

(12 rows)

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
13, 3, false

);
seq | node | edge | cost | agg_cost

-----+------+------+------+----------
1 | 13 | -1 | 0 | 0

6.1. Routing Functions 113

pgRouting Manual, Release 2.3.2 (master)

2 | 10 | 14 | 1 | 1
3 | 5 | 10 | 1 | 2
4 | 11 | 12 | 1 | 2
5 | 2 | 4 | 1 | 3
6 | 6 | 8 | 1 | 3
7 | 8 | 7 | 1 | 3
8 | 12 | 13 | 1 | 3

(8 rows)

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
array[2,13], 3, false

);
seq | from_v | node | edge | cost | agg_cost

-----+--------+------+------+------+----------
1 | 2 | 2 | -1 | 0 | 0
2 | 2 | 1 | 1 | 1 | 1
3 | 2 | 3 | 2 | 1 | 1
4 | 2 | 5 | 4 | 1 | 1
5 | 2 | 4 | 3 | 1 | 2
6 | 2 | 6 | 8 | 1 | 2
7 | 2 | 8 | 7 | 1 | 2
8 | 2 | 10 | 10 | 1 | 2
9 | 2 | 7 | 6 | 1 | 3
10 | 2 | 9 | 16 | 1 | 3
11 | 2 | 11 | 12 | 1 | 3
12 | 2 | 13 | 14 | 1 | 3
13 | 13 | 13 | -1 | 0 | 0
14 | 13 | 10 | 14 | 1 | 1
15 | 13 | 5 | 10 | 1 | 2
16 | 13 | 11 | 12 | 1 | 2
17 | 13 | 2 | 4 | 1 | 3
18 | 13 | 6 | 8 | 1 | 3
19 | 13 | 8 | 7 | 1 | 3
20 | 13 | 12 | 13 | 1 | 3

(20 rows)

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
array[2,13], 3, false, equicost:=true

);
seq | from_v | node | edge | cost | agg_cost

-----+--------+------+------+------+----------
1 | 2 | 2 | -1 | 0 | 0
2 | 2 | 1 | 1 | 1 | 1
3 | 2 | 3 | 2 | 1 | 1
4 | 2 | 5 | 4 | 1 | 1
5 | 2 | 4 | 3 | 1 | 2
6 | 2 | 6 | 8 | 1 | 2
7 | 2 | 8 | 7 | 1 | 2
8 | 2 | 7 | 6 | 1 | 3
9 | 2 | 9 | 16 | 1 | 3
10 | 13 | 13 | -1 | 0 | 0
11 | 13 | 10 | 14 | 1 | 1
12 | 13 | 11 | 12 | 1 | 2
13 | 13 | 12 | 13 | 1 | 3

(13 rows)

Examples for queries marked as directed with cost column The examples in this section use the follow-
ing Graph 3: Directed, with cost

114 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost FROM edge_table',
2, 3

);
seq | node | edge | cost | agg_cost

-----+------+------+------+----------
1 | 2 | -1 | 0 | 0
2 | 5 | 4 | 1 | 1
3 | 6 | 8 | 1 | 2
4 | 10 | 10 | 1 | 2
5 | 9 | 9 | 1 | 3
6 | 11 | 11 | 1 | 3
7 | 13 | 14 | 1 | 3

(7 rows)

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost FROM edge_table',
13, 3

);
seq | node | edge | cost | agg_cost

-----+------+------+------+----------
1 | 13 | -1 | 0 | 0

(1 row)

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost FROM edge_table',
array[2,13], 3

);
seq | from_v | node | edge | cost | agg_cost

-----+--------+------+------+------+----------
1 | 2 | 2 | -1 | 0 | 0
2 | 2 | 5 | 4 | 1 | 1
3 | 2 | 6 | 8 | 1 | 2
4 | 2 | 10 | 10 | 1 | 2
5 | 2 | 9 | 9 | 1 | 3
6 | 2 | 11 | 11 | 1 | 3
7 | 2 | 13 | 14 | 1 | 3
8 | 13 | 13 | -1 | 0 | 0

(8 rows)

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost FROM edge_table',
array[2,13], 3, equicost:=true

);
seq | from_v | node | edge | cost | agg_cost

-----+--------+------+------+------+----------
1 | 2 | 2 | -1 | 0 | 0
2 | 2 | 5 | 4 | 1 | 1
3 | 2 | 6 | 8 | 1 | 2
4 | 2 | 10 | 10 | 1 | 2
5 | 2 | 9 | 9 | 1 | 3
6 | 2 | 11 | 11 | 1 | 3
7 | 13 | 13 | -1 | 0 | 0

(7 rows)

Examples for queries marked as undirected with cost column The examples in this section use the
following Graph 4: Undirected, with cost

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost FROM edge_table',
2, 3, false

6.1. Routing Functions 115

pgRouting Manual, Release 2.3.2 (master)

);
seq | node | edge | cost | agg_cost

-----+------+------+------+----------
1 | 2 | -1 | 0 | 0
2 | 1 | 1 | 1 | 1
3 | 5 | 4 | 1 | 1
4 | 6 | 8 | 1 | 2
5 | 8 | 7 | 1 | 2
6 | 10 | 10 | 1 | 2
7 | 3 | 5 | 1 | 3
8 | 7 | 6 | 1 | 3
9 | 9 | 9 | 1 | 3
10 | 11 | 12 | 1 | 3
11 | 13 | 14 | 1 | 3

(11 rows)

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost FROM edge_table',
13, 3, false

);
seq | node | edge | cost | agg_cost

-----+------+------+------+----------
1 | 13 | -1 | 0 | 0
2 | 10 | 14 | 1 | 1
3 | 5 | 10 | 1 | 2
4 | 11 | 12 | 1 | 2
5 | 2 | 4 | 1 | 3
6 | 6 | 8 | 1 | 3
7 | 8 | 7 | 1 | 3
8 | 12 | 13 | 1 | 3

(8 rows)

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost FROM edge_table',
array[2,13], 3, false

);
seq | from_v | node | edge | cost | agg_cost

-----+--------+------+------+------+----------
1 | 2 | 2 | -1 | 0 | 0
2 | 2 | 1 | 1 | 1 | 1
3 | 2 | 5 | 4 | 1 | 1
4 | 2 | 6 | 8 | 1 | 2
5 | 2 | 8 | 7 | 1 | 2
6 | 2 | 10 | 10 | 1 | 2
7 | 2 | 3 | 5 | 1 | 3
8 | 2 | 7 | 6 | 1 | 3
9 | 2 | 9 | 9 | 1 | 3
10 | 2 | 11 | 12 | 1 | 3
11 | 2 | 13 | 14 | 1 | 3
12 | 13 | 13 | -1 | 0 | 0
13 | 13 | 10 | 14 | 1 | 1
14 | 13 | 5 | 10 | 1 | 2
15 | 13 | 11 | 12 | 1 | 2
16 | 13 | 2 | 4 | 1 | 3
17 | 13 | 6 | 8 | 1 | 3
18 | 13 | 8 | 7 | 1 | 3
19 | 13 | 12 | 13 | 1 | 3

(19 rows)

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost FROM edge_table',
array[2,13], 3, false, equicost:=true

);

116 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

seq | from_v | node | edge | cost | agg_cost
-----+--------+------+------+------+----------

1 | 2 | 2 | -1 | 0 | 0
2 | 2 | 1 | 1 | 1 | 1
3 | 2 | 5 | 4 | 1 | 1
4 | 2 | 6 | 8 | 1 | 2
5 | 2 | 8 | 7 | 1 | 2
6 | 2 | 3 | 5 | 1 | 3
7 | 2 | 7 | 6 | 1 | 3
8 | 2 | 9 | 9 | 1 | 3
9 | 13 | 13 | -1 | 0 | 0
10 | 13 | 10 | 14 | 1 | 1
11 | 13 | 11 | 12 | 1 | 2
12 | 13 | 12 | 13 | 1 | 3

(12 rows)

See Also

• pgr_alphaShape - Alpha shape computation

• pgr_pointsAsPolygon - Polygon around set of points

• Sample Data network.

Indices and tables

• genindex

• search

6.1.7 Driving Distance post-processing

• pgr_alphaShape - Alpha shape computation

• pgr_pointsAsPolygon - Polygon around set of points

pgr_alphaShape

Name

pgr_alphaShape — Core function for alpha shape computation.

Synopsis

Returns a table with (x, y) rows that describe the vertices of an alpha shape.

table() pgr_alphaShape(text sql [, float8 alpha]);

Description

sql text a SQL query, which should return a set of rows with the following columns:

SELECT id, x, y FROM vertex_table

id int4 identifier of the vertex

6.1. Routing Functions 117

pgRouting Manual, Release 2.3.2 (master)

x float8 x-coordinate

y float8 y-coordinate

alpha (optional) float8 alpha value. If specified alpha value equals 0 (default), then optimal alpha
value is used. For more information, see CGAL - 2D Alpha Shapes10.

Returns a vertex record for each row:

x x-coordinate

y y-coordinate

If a result includes multiple outer/inner rings, return those with separator row (x=NULL and y=NULL).

History

• Renamed in version 2.0.0

• Added alpha argument with default 0 (use optimal value) in version 2.1.0

• Supported to return multiple outer/inner ring coordinates with separator row (x=NULL and y=NULL) in
version 2.1.0

Examples

In the alpha shape code we have no way to control the order of the points so the actual output you might get
could be similar but different. The simple query is followed by a more complex one that constructs a polygon and
computes the areas of it. This should be the same as the result on your system. We leave the details of the complex
query to the reader as an exercise if they wish to decompose it into understandable pieces or to just copy and paste
it into a SQL window to run.

SELECT * FROM pgr_alphaShape('SELECT id, x, y FROM vertex_table');

x | y
---+---
2 | 4
0 | 2
2 | 0
4 | 1
4 | 2
4 | 3

(6 rows)

SELECT round(ST_Area(ST_MakePolygon(ST_AddPoint(foo.openline, ST_StartPoint(foo.openline))))::numeric, 2) AS st_area
FROM (SELECT ST_MakeLine(points ORDER BY id) AS openline FROM
(SELECT ST_MakePoint(x, y) AS points, row_number() over() AS id
FROM pgr_alphaShape('SELECT id, x, y FROM vertex_table')
) AS a) AS foo;

st_area

10.00
(1 row)

SELECT * FROM pgr_alphaShape('SELECT id::integer, ST_X(the_geom)::float AS x, ST_Y(the_geom)::float AS y FROM edge_table_vertices_pgr');
x | y

-----+-----
2 | 4

0.5 | 3.5

10http://doc.cgal.org/latest/Alpha_shapes_2/group__PkgAlphaShape2.html

118 Chapter 6. Routing Functions

http://doc.cgal.org/latest/Alpha_shapes_2/group__PkgAlphaShape2.html

pgRouting Manual, Release 2.3.2 (master)

0 | 2
2 | 0
4 | 1
4 | 2
4 | 3

3.5 | 4
(8 rows)

SELECT round(ST_Area(ST_MakePolygon(ST_AddPoint(foo.openline, ST_StartPoint(foo.openline))))::numeric, 2) AS st_area
FROM (SELECT ST_MakeLine(points ORDER BY id) AS openline FROM
(SELECT ST_MakePoint(x, y) AS points, row_number() over() AS id
FROM pgr_alphaShape('SELECT id::integer, ST_X(the_geom)::float AS x, ST_Y(the_geom)::float AS y FROM edge_table_vertices_pgr')
) AS a) AS foo;

st_area

11.75
(1 row)

The queries use the Sample Data network.

See Also

• pgr_drivingDistance - Driving Distance

• pgr_pointsAsPolygon - Polygon around set of points

pgr_pointsAsPolygon

Name

pgr_pointsAsPolygon — Draws an alpha shape around given set of points.

Synopsis

Returns the alpha shape as (multi)polygon geometry.

geometry pgr_pointsAsPolygon(text sql [, float8 alpha]);

Description

sql text a SQL query, which should return a set of rows with the following columns:

SELECT id, x, y FROM vertex_result;

id int4 identifier of the vertex

x float8 x-coordinate

y float8 y-coordinate

alpha (optional) float8 alpha value. If specified alpha value equals 0 (default), then optimal alpha
value is used. For more information, see CGAL - 2D Alpha Shapes11.

Returns a (multi)polygon geometry (with holes).

11http://doc.cgal.org/latest/Alpha_shapes_2/group__PkgAlphaShape2.html

6.1. Routing Functions 119

http://doc.cgal.org/latest/Alpha_shapes_2/group__PkgAlphaShape2.html

pgRouting Manual, Release 2.3.2 (master)

History

• Renamed in version 2.0.0

• Added alpha argument with default 0 (use optimal value) in version 2.1.0

• Supported to return a (multi)polygon geometry (with holes) in version 2.1.0

Examples

In the following query there is no way to control which point in the polygon is the first in the list, so you may get
similar but different results than the following which are also correct.

SELECT ST_AsText(pgr_pointsAsPolygon('SELECT id::integer, ST_X(the_geom)::float AS x, ST_Y(the_geom)::float AS y
FROM edge_table_vertices_pgr'));

st_astext
--
POLYGON((2 4,3.5 4,4 3,4 2,4 1,2 0,0 2,0.5 3.5,2 4))

(1 row)

The query use the Sample Data network.

See Also

• pgr_drivingDistance - Driving Distance

• pgr_alphaShape - Alpha shape computation

6.1.8 pgr_ksp

Name

pgr_ksp — Returns the “K” shortest paths.

12

Fig. 6.7: Boost Graph Inside

Synopsis

The K shortest path routing algorithm based on Yen’s algorithm. “K” is the number of shortest paths desired.

Signature Summary

pgr_ksp(edges_sql, start_vid, end_vid, K);
pgr_ksp(edges_sql, start_vid, end_vid, k, directed, heap_paths)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost) or EMPTY SET

120 Chapter 6. Routing Functions

http://www.boost.org/libs/graph

pgRouting Manual, Release 2.3.2 (master)

Signatures

Minimal Signature

pgr_ksp(edges_sql, start_vid, end_vid, K);
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost) or EMPTY SET

Complete Signature

pgr_ksp(edges_sql, start_vid, end_vid, k, directed, heap_paths)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost) or EMPTY SET

Description of the Signatures

Description of the edges_sql query

edges_sql an SQL query, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end

point vertex of the edge.
target ANY-INTEGER Identifier of the second end

point vertex of the edge.
cost ANY-NUMERICAL

Weight of the edge (source, target)

• When neg-
ative: edge
(source, tar-
get) does not
exist, therefore
it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1
Weight of the edge (target, source),

• When nega-
tive: edge (tar-
get, source)
does not exist,
therefore it’s
not part of the
graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

6.1. Routing Functions 121

pgRouting Manual, Release 2.3.2 (master)

Column Type Description
edges_-
sql

TEXT SQL query as described above.

start_-
vid

BIGINT Identifier of the starting vertex.

end_vid BIGINT Identifier of the ending vertex.
k INTEGERThe desiered number of paths.
directed BOOLEAN(optional). When false the graph is considered as Undirected. Default is true

which considers the graph as Directed.
heap_-
paths

BOOLEAN(optional). When true returns all the paths stored in the process heap. Default is
false which only returns k pahts.

Roughly, if the shortest path has N edges, the heap will contain about than N * k paths for small value of k and
k > 1.

Description of the return values

Returns set of (seq, path_seq, path_id, node, edge, cost, agg_cost)

Col-
umn

Type Description

seq INTEGER Sequential value starting from 1.
path_-
seq

INTEGER Relative position in the path of node and edge. Has value 1 for the beginning of a path.

path_-
id

BIGINT Path identifier. The ordering of the paths For two paths i, j if i < j then agg_cost(i) <=
agg_cost(j).

node BIGINT Identifier of the node in the path.
edge BIGINT Identifier of the edge used to go from node to the next node in the path sequence. -1

for the last node of the route.
cost FLOAT Cost to traverse from node using edge to the next node in the path sequence.
agg_-
cost

FLOAT Aggregate cost from start_vid to node.

Warning: During the transition to 3.0, because pgr_ksp version 2.0 doesn’t have defined a directed flag nor a
heap_path flag, when pgr_ksp is used with only one flag version 2.0 signature will be used.

Additional Examples

Examples to handle the one flag to choose signatures

The examples in this section use the following Graph 1: Directed, with cost and reverse cost

SELECT * FROM pgr_ksp(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 12, 2,
true

);
NOTICE: Deprecated function
seq | id1 | id2 | id3 | cost

-----+-----+-----+-----+------
0 | 0 | 2 | 4 | 1
1 | 0 | 5 | 8 | 1
2 | 0 | 6 | 9 | 1
3 | 0 | 9 | 15 | 1
4 | 0 | 12 | -1 | 0
5 | 1 | 2 | 4 | 1
6 | 1 | 5 | 8 | 1

122 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

7 | 1 | 6 | 11 | 1
8 | 1 | 11 | 13 | 1
9 | 1 | 12 | -1 | 0

(10 rows)

SELECT * FROM pgr_ksp(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 12, 2,
directed:=true

);
seq | path_id | path_seq | node | edge | cost | agg_cost

-----+---------+----------+------+------+------+----------
1 | 1 | 1 | 2 | 4 | 1 | 0
2 | 1 | 2 | 5 | 8 | 1 | 1
3 | 1 | 3 | 6 | 9 | 1 | 2
4 | 1 | 4 | 9 | 15 | 1 | 3
5 | 1 | 5 | 12 | -1 | 0 | 4
6 | 2 | 1 | 2 | 4 | 1 | 0
7 | 2 | 2 | 5 | 8 | 1 | 1
8 | 2 | 3 | 6 | 11 | 1 | 2
9 | 2 | 4 | 11 | 13 | 1 | 3
10 | 2 | 5 | 12 | -1 | 0 | 4

(10 rows)

SELECT * FROM pgr_ksp(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 12, 2

);
seq | path_id | path_seq | node | edge | cost | agg_cost

-----+---------+----------+------+------+------+----------
1 | 1 | 1 | 2 | 4 | 1 | 0
2 | 1 | 2 | 5 | 8 | 1 | 1
3 | 1 | 3 | 6 | 9 | 1 | 2
4 | 1 | 4 | 9 | 15 | 1 | 3
5 | 1 | 5 | 12 | -1 | 0 | 4
6 | 2 | 1 | 2 | 4 | 1 | 0
7 | 2 | 2 | 5 | 8 | 1 | 1
8 | 2 | 3 | 6 | 11 | 1 | 2
9 | 2 | 4 | 11 | 13 | 1 | 3
10 | 2 | 5 | 12 | -1 | 0 | 4

(10 rows)

Examples for queries marked as directed with cost and reverse_cost columns

The examples in this section use the following Graph 1: Directed, with cost and reverse cost

SELECT * FROM pgr_ksp(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 12, 2

);
seq | path_id | path_seq | node | edge | cost | agg_cost

-----+---------+----------+------+------+------+----------
1 | 1 | 1 | 2 | 4 | 1 | 0
2 | 1 | 2 | 5 | 8 | 1 | 1
3 | 1 | 3 | 6 | 9 | 1 | 2
4 | 1 | 4 | 9 | 15 | 1 | 3
5 | 1 | 5 | 12 | -1 | 0 | 4
6 | 2 | 1 | 2 | 4 | 1 | 0
7 | 2 | 2 | 5 | 8 | 1 | 1
8 | 2 | 3 | 6 | 11 | 1 | 2

6.1. Routing Functions 123

pgRouting Manual, Release 2.3.2 (master)

9 | 2 | 4 | 11 | 13 | 1 | 3
10 | 2 | 5 | 12 | -1 | 0 | 4

(10 rows)

SELECT * FROM pgr_ksp(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 12, 2, heap_paths:=true

);
seq | path_id | path_seq | node | edge | cost | agg_cost

-----+---------+----------+------+------+------+----------
1 | 1 | 1 | 2 | 4 | 1 | 0
2 | 1 | 2 | 5 | 8 | 1 | 1
3 | 1 | 3 | 6 | 9 | 1 | 2
4 | 1 | 4 | 9 | 15 | 1 | 3
5 | 1 | 5 | 12 | -1 | 0 | 4
6 | 2 | 1 | 2 | 4 | 1 | 0
7 | 2 | 2 | 5 | 8 | 1 | 1
8 | 2 | 3 | 6 | 11 | 1 | 2
9 | 2 | 4 | 11 | 13 | 1 | 3
10 | 2 | 5 | 12 | -1 | 0 | 4
11 | 3 | 1 | 2 | 4 | 1 | 0
12 | 3 | 2 | 5 | 10 | 1 | 1
13 | 3 | 3 | 10 | 12 | 1 | 2
14 | 3 | 4 | 11 | 13 | 1 | 3
15 | 3 | 5 | 12 | -1 | 0 | 4

(15 rows)

SELECT * FROM pgr_ksp(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 12, 2, true, true

);
seq | path_id | path_seq | node | edge | cost | agg_cost

-----+---------+----------+------+------+------+----------
1 | 1 | 1 | 2 | 4 | 1 | 0
2 | 1 | 2 | 5 | 8 | 1 | 1
3 | 1 | 3 | 6 | 9 | 1 | 2
4 | 1 | 4 | 9 | 15 | 1 | 3
5 | 1 | 5 | 12 | -1 | 0 | 4
6 | 2 | 1 | 2 | 4 | 1 | 0
7 | 2 | 2 | 5 | 8 | 1 | 1
8 | 2 | 3 | 6 | 11 | 1 | 2
9 | 2 | 4 | 11 | 13 | 1 | 3
10 | 2 | 5 | 12 | -1 | 0 | 4
11 | 3 | 1 | 2 | 4 | 1 | 0
12 | 3 | 2 | 5 | 10 | 1 | 1
13 | 3 | 3 | 10 | 12 | 1 | 2
14 | 3 | 4 | 11 | 13 | 1 | 3
15 | 3 | 5 | 12 | -1 | 0 | 4

(15 rows)

Examples for queries marked as undirected with cost and reverse_cost columns

The examples in this section use the following Graph 2: Undirected, with cost and reverse cost

SELECT * FROM pgr_ksp(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 12, 2, directed:=false

);
seq | path_id | path_seq | node | edge | cost | agg_cost

-----+---------+----------+------+------+------+----------

124 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

1 | 1 | 1 | 2 | 2 | 1 | 0
2 | 1 | 2 | 3 | 3 | 1 | 1
3 | 1 | 3 | 4 | 16 | 1 | 2
4 | 1 | 4 | 9 | 15 | 1 | 3
5 | 1 | 5 | 12 | -1 | 0 | 4
6 | 2 | 1 | 2 | 4 | 1 | 0
7 | 2 | 2 | 5 | 8 | 1 | 1
8 | 2 | 3 | 6 | 11 | 1 | 2
9 | 2 | 4 | 11 | 13 | 1 | 3
10 | 2 | 5 | 12 | -1 | 0 | 4

(10 rows)

SELECT * FROM pgr_ksp(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 12, 2, false, true

);
seq | path_id | path_seq | node | edge | cost | agg_cost

-----+---------+----------+------+------+------+----------
1 | 1 | 1 | 2 | 2 | 1 | 0
2 | 1 | 2 | 3 | 3 | 1 | 1
3 | 1 | 3 | 4 | 16 | 1 | 2
4 | 1 | 4 | 9 | 15 | 1 | 3
5 | 1 | 5 | 12 | -1 | 0 | 4
6 | 2 | 1 | 2 | 4 | 1 | 0
7 | 2 | 2 | 5 | 8 | 1 | 1
8 | 2 | 3 | 6 | 11 | 1 | 2
9 | 2 | 4 | 11 | 13 | 1 | 3
10 | 2 | 5 | 12 | -1 | 0 | 4
11 | 3 | 1 | 2 | 4 | 1 | 0
12 | 3 | 2 | 5 | 10 | 1 | 1
13 | 3 | 3 | 10 | 12 | 1 | 2
14 | 3 | 4 | 11 | 13 | 1 | 3
15 | 3 | 5 | 12 | -1 | 0 | 4
16 | 4 | 1 | 2 | 4 | 1 | 0
17 | 4 | 2 | 5 | 10 | 1 | 1
18 | 4 | 3 | 10 | 12 | 1 | 2
19 | 4 | 4 | 11 | 11 | 1 | 3
20 | 4 | 5 | 6 | 9 | 1 | 4
21 | 4 | 6 | 9 | 15 | 1 | 5
22 | 4 | 7 | 12 | -1 | 0 | 6

(22 rows)

Examples for queries marked as directed with cost column

The examples in this section use the following Graph 3: Directed, with cost

SELECT * FROM pgr_ksp(
'SELECT id, source, target, cost FROM edge_table',
2, 3, 2

);
seq | path_id | path_seq | node | edge | cost | agg_cost

-----+---------+----------+------+------+------+----------
(0 rows)

SELECT * FROM pgr_ksp(
'SELECT id, source, target, cost FROM edge_table',
2, 12, 2

);
seq | path_id | path_seq | node | edge | cost | agg_cost

-----+---------+----------+------+------+------+----------

6.1. Routing Functions 125

pgRouting Manual, Release 2.3.2 (master)

1 | 1 | 1 | 2 | 4 | 1 | 0
2 | 1 | 2 | 5 | 8 | 1 | 1
3 | 1 | 3 | 6 | 9 | 1 | 2
4 | 1 | 4 | 9 | 15 | 1 | 3
5 | 1 | 5 | 12 | -1 | 0 | 4
6 | 2 | 1 | 2 | 4 | 1 | 0
7 | 2 | 2 | 5 | 8 | 1 | 1
8 | 2 | 3 | 6 | 11 | 1 | 2
9 | 2 | 4 | 11 | 13 | 1 | 3
10 | 2 | 5 | 12 | -1 | 0 | 4

(10 rows)

SELECT * FROM pgr_ksp(
'SELECT id, source, target, cost FROM edge_table',
2, 12, 2, heap_paths:=true

);
seq | path_id | path_seq | node | edge | cost | agg_cost

-----+---------+----------+------+------+------+----------
1 | 1 | 1 | 2 | 4 | 1 | 0
2 | 1 | 2 | 5 | 8 | 1 | 1
3 | 1 | 3 | 6 | 9 | 1 | 2
4 | 1 | 4 | 9 | 15 | 1 | 3
5 | 1 | 5 | 12 | -1 | 0 | 4
6 | 2 | 1 | 2 | 4 | 1 | 0
7 | 2 | 2 | 5 | 8 | 1 | 1
8 | 2 | 3 | 6 | 11 | 1 | 2
9 | 2 | 4 | 11 | 13 | 1 | 3
10 | 2 | 5 | 12 | -1 | 0 | 4
11 | 3 | 1 | 2 | 4 | 1 | 0
12 | 3 | 2 | 5 | 10 | 1 | 1
13 | 3 | 3 | 10 | 12 | 1 | 2
14 | 3 | 4 | 11 | 13 | 1 | 3
15 | 3 | 5 | 12 | -1 | 0 | 4

(15 rows)

SELECT * FROM pgr_ksp(
'SELECT id, source, target, cost FROM edge_table',
2, 12, 2, true, true

);
seq | path_id | path_seq | node | edge | cost | agg_cost

-----+---------+----------+------+------+------+----------
1 | 1 | 1 | 2 | 4 | 1 | 0
2 | 1 | 2 | 5 | 8 | 1 | 1
3 | 1 | 3 | 6 | 9 | 1 | 2
4 | 1 | 4 | 9 | 15 | 1 | 3
5 | 1 | 5 | 12 | -1 | 0 | 4
6 | 2 | 1 | 2 | 4 | 1 | 0
7 | 2 | 2 | 5 | 8 | 1 | 1
8 | 2 | 3 | 6 | 11 | 1 | 2
9 | 2 | 4 | 11 | 13 | 1 | 3
10 | 2 | 5 | 12 | -1 | 0 | 4
11 | 3 | 1 | 2 | 4 | 1 | 0
12 | 3 | 2 | 5 | 10 | 1 | 1
13 | 3 | 3 | 10 | 12 | 1 | 2
14 | 3 | 4 | 11 | 13 | 1 | 3
15 | 3 | 5 | 12 | -1 | 0 | 4

(15 rows)

126 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

Examples for queries marked as undirected with cost column

The examples in this section use the following Graph 4: Undirected, with cost

SELECT * FROM pgr_ksp(
'SELECT id, source, target, cost FROM edge_table',
2, 12, 2, directed:=false

);
seq | path_id | path_seq | node | edge | cost | agg_cost

-----+---------+----------+------+------+------+----------
1 | 1 | 1 | 2 | 4 | 1 | 0
2 | 1 | 2 | 5 | 8 | 1 | 1
3 | 1 | 3 | 6 | 9 | 1 | 2
4 | 1 | 4 | 9 | 15 | 1 | 3
5 | 1 | 5 | 12 | -1 | 0 | 4
6 | 2 | 1 | 2 | 4 | 1 | 0
7 | 2 | 2 | 5 | 8 | 1 | 1
8 | 2 | 3 | 6 | 11 | 1 | 2
9 | 2 | 4 | 11 | 13 | 1 | 3
10 | 2 | 5 | 12 | -1 | 0 | 4

(10 rows)

SELECT * FROM pgr_ksp(
'SELECT id, source, target, cost FROM edge_table',
2, 12, 2, directed:=false, heap_paths:=true

);
seq | path_id | path_seq | node | edge | cost | agg_cost

-----+---------+----------+------+------+------+----------
1 | 1 | 1 | 2 | 4 | 1 | 0
2 | 1 | 2 | 5 | 8 | 1 | 1
3 | 1 | 3 | 6 | 9 | 1 | 2
4 | 1 | 4 | 9 | 15 | 1 | 3
5 | 1 | 5 | 12 | -1 | 0 | 4
6 | 2 | 1 | 2 | 4 | 1 | 0
7 | 2 | 2 | 5 | 8 | 1 | 1
8 | 2 | 3 | 6 | 11 | 1 | 2
9 | 2 | 4 | 11 | 13 | 1 | 3
10 | 2 | 5 | 12 | -1 | 0 | 4
11 | 3 | 1 | 2 | 4 | 1 | 0
12 | 3 | 2 | 5 | 10 | 1 | 1
13 | 3 | 3 | 10 | 12 | 1 | 2
14 | 3 | 4 | 11 | 13 | 1 | 3
15 | 3 | 5 | 12 | -1 | 0 | 4

(15 rows)

See Also

• http://en.wikipedia.org/wiki/K_shortest_path_routing

• Sample Data network.

Indices and tables

• genindex

• search

6.1. Routing Functions 127

http://en.wikipedia.org/wiki/K_shortest_path_routing

pgRouting Manual, Release 2.3.2 (master)

6.1.9 Traveling Sales Person

• pgr_TSP - When input is given as matrix cell information.

• pgr_eucledianTSP - When input are coordinates.

pgr_TSP

Name

• pgr_TSP - Returns a route that visits all the nodes exactly once.

Synopsis

The travelling salesman problem (TSP) or travelling salesperson problem asks the following question:

• Given a list of cities and the distances between each pair of cities, what is the shortest possible route that
visits each city exactly once and returns to the origin city?

This implementation uses simulated annealing to return the approximate solution when the input is given in the
form of matrix cell contents. The matrix informetion must be symmetrical.

Signature Summary

pgr_TSP(matrix_cell_sql)
pgr_TSP(matrix_cell_sql,

start_id, end_id,
max_processing_time,
tries_per_temperature, max_changes_per_temperature, max_consecutive_non_changes,
initial_temperature, final_temperature, cooling_factor,
randomize,

RETURNS SETOF (seq, node, cost, agg_cost)

Signatures

Note: The following only aplies to the new signature(s)

Basic Use
pgr_TSP(matrix_cell_sql)
RETURNS SETOF (seq, node, cost, agg_cost)

Example

Because the documentation examples are auto generated and tested for non changing results, and the default is to
have random execution, the example is wrapping the actual call.

WITH
query AS (

SELECT * FROM pgr_TSP(
$$
SELECT * FROM pgr_dijkstraCostMatrix(

'SELECT id, source, target, cost, reverse_cost FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 14),
directed := false

)
$$

128 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

)
)
SELECT agg_cost < 20 AS under_20 FROM query WHERE seq = 14;
under_20

t

(1 row)

Complete Signature
pgr_TSP(matrix_cell_sql,

start_id, end_id,
max_processing_time,
tries_per_temperature, max_changes_per_temperature, max_consecutive_non_changes,
initial_temperature, final_temperature, cooling_factor,
randomize,

RETURNS SETOF (seq, node, cost, agg_cost)

Example:

SELECT * FROM pgr_TSP(
$$
SELECT * FROM pgr_dijkstraCostMatrix(

'SELECT id, source, target, cost, reverse_cost FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 14),
directed := false

)
$$,
start_id := 7,
randomize := false

);
seq | node | cost | agg_cost

-----+------+------+----------
1 | 7 | 1 | 0
2 | 8 | 1 | 1
3 | 5 | 1 | 2
4 | 2 | 1 | 3
5 | 1 | 2 | 4
6 | 3 | 1 | 6
7 | 4 | 1 | 7
8 | 9 | 1 | 8
9 | 12 | 1 | 9
10 | 11 | 1 | 10
11 | 10 | 1 | 11
12 | 13 | 3 | 12
13 | 6 | 3 | 15
14 | 7 | 0 | 18

(14 rows)

Description of the Signatures

Description of the Matrix Cell SQL query

Column Type Description
start_vid BIGINT Identifier of the starting vertex.
end_vid BIGINT Identifier of the ending vertex.
agg_cost FLOAT Cost for going from start_vid to end_vid

Can be Used with:

6.1. Routing Functions 129

pgRouting Manual, Release 2.3.2 (master)

• pgr_dijkstraCostMatrix - proposed

• pgr_withPointsCostMatrix - proposed

• pgr_floydWarshall

• pgr_johnson

To generate a symmetric matrix

• directed := false.

If using directed := true, the resulting non symmetric matrix must be converted to symmetric by fixing the non
symmetric values according to your application needs.

Description Of the Control parameters The control parameters are optional, and have a default value.

Parameter Type Default Description
start_vid BIGINT 0 The greedy part of the im-

plementation will use this
identifier.

end_vid BIGINT 0 Last visiting vertex before
returning to start_vid.

max_processing_time FLOAT +infinity Stop the annealing pro-
cessing when the value is
reached.

tries_per_temperature INTEGER 500 Maximum number of
times a neighbor(s) is
searched in each tempera-
ture.

max_changes_per_tem-
perature

INTEGER 60 Maximum number of
times the solution is
changed in each tempera-
ture.

max_consecutive_non_-
changes

INTEGER 100 Maximum number of con-
secutive times the solution
is not changed in each tem-
perature.

initial_temperature FLOAT 100 Starting temperature.
final_temperature FLOAT 0.1 Ending temperature.
cooling_factor FLOAT 0.9 Value between between 0

and 1 (not including) used
to calculate the next tem-
perature.

randomize BOOLEAN true Choose the random seed
• true: Use current

time as seed
• false: Use 1 as seed.

Using this value will
get the same results
with the same data
in each execution.

Description of the return values Returns set of (seq, node, cost, agg_cost)

130 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

Column Type Description
seq INTEGER Row sequence.
node BIGINT Identifier of the

node/coordinate/point.
cost FLOAT

Cost to traverse from the current node ito the next node in the path sequence.

• 0 for the last row in the
path sequence.

agg_cost FLOAT
Aggregate cost from the node at seq = 1 to the current node.

• 0 for the first row in the
path sequence.

Examples

Example Using with points of interest.

To generate a symmetric matrix:

• the side information of pointsOfInterset is ignored by not including it in the query

• and directed := false

SELECT * FROM pgr_TSP(
$$
SELECT * FROM pgr_withPointsCostMatrix(

'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction from pointsOfInterest',
array[-1, 3, 5, 6, -6], directed := false);

$$,
start_id := 5,
randomize := false

);
seq | node | cost | agg_cost

-----+------+------+----------
1 | 5 | 1 | 0
2 | 6 | 1 | 1
3 | 3 | 1.6 | 2
4 | -1 | 1.3 | 3.6
5 | -6 | 0.3 | 4.9
6 | 5 | 0 | 5.2

(6 rows)

The queries use the Sample Data network.

History

• Rewritten in version 2.3.0

• Renamed in version 2.0.0

• GAUL dependency removed in version 2.0.0

See Also

• Traveling Sales Person

6.1. Routing Functions 131

pgRouting Manual, Release 2.3.2 (master)

• http://en.wikipedia.org/wiki/Traveling_salesman_problem

• http://en.wikipedia.org/wiki/Simulated_annealing

pgr_eucledianTSP

Name

• pgr_eucledianTSP - Returns a route that visits all the coordinates pairs exactly once.

Synopsis

The travelling salesman problem (TSP) or travelling salesperson problem asks the following question:

• Given a list of cities and the distances between each pair of cities, what is the shortest possible route that
visits each city exactly once and returns to the origin city?

This implementation uses simulated annealing to return the approximate solution when the input is given in the
form of coordinates.

Signature Summary

pgr_eucledianTSP(coordinates_sql)
pgr_eucledianTSP(coordinates_sql,

start_id, end_id,
max_processing_time,
tries_per_temperature, max_changes_per_temperature, max_consecutive_non_changes,
initial_temperature, final_temperature, cooling_factor,
randomize,

RETURNS SETOF (seq, node, cost, agg_cost)

Signatures

Minimal Signature
pgr_eucledianTSP(coordinates_sql)
RETURNS SETOF (seq, node, cost, agg_cost)

Example

Because the documentation examples are auto generated and tested for non changing results, and the default is to
have random execution, the example is wrapping the actual call.

WITH
query AS (

SELECT * FROM pgr_eucledianTSP(
$$
SELECT id, st_X(the_geom) AS x, st_Y(the_geom)AS y FROM edge_table_vertices_pgr
$$

)
)
SELECT agg_cost < 20 AS under_20 FROM query WHERE seq = 18;
under_20

t

(1 row)

132 Chapter 6. Routing Functions

http://en.wikipedia.org/wiki/Traveling_salesman_problem
http://en.wikipedia.org/wiki/Simulated_annealing

pgRouting Manual, Release 2.3.2 (master)

Complete Signature
pgr_eucledianTSP(coordinates_sql,

start_id, end_id,
max_processing_time,
tries_per_temperature, max_changes_per_temperature, max_consecutive_non_changes,
initial_temperature, final_temperature, cooling_factor,
randomize,

RETURNS SETOF (seq, node, cost, agg_cost)

Example:

SELECT* from pgr_eucledianTSP(
$$
SELECT id, st_X(the_geom) AS x, st_Y(the_geom) AS y FROM edge_table_vertices_pgr
$$,
tries_per_temperature := 3,
cooling_factor := 0.5,
randomize := false

);
seq | node | cost | agg_cost

-----+------+------------------+------------------
1 | 1 | 1.4142135623731 | 0
2 | 3 | 1 | 1.4142135623731
3 | 4 | 1 | 2.41421356237309
4 | 9 | 0.58309518948453 | 3.41421356237309
5 | 16 | 0.58309518948453 | 3.99730875185762
6 | 6 | 1 | 4.58040394134215
7 | 5 | 1 | 5.58040394134215
8 | 8 | 1 | 6.58040394134215
9 | 7 | 1.58113883008419 | 7.58040394134215
10 | 14 | 1.499999999999 | 9.16154277142634
11 | 15 | 0.5 | 10.6615427714253
12 | 13 | 1.5 | 11.1615427714253
13 | 17 | 1.11803398874989 | 12.6615427714253
14 | 12 | 1 | 13.7795767601752
15 | 11 | 1 | 14.7795767601752
16 | 10 | 2 | 15.7795767601752
17 | 2 | 1 | 17.7795767601752
18 | 1 | 0 | 18.7795767601752

(18 rows)

Description of the Signatures

Description of the coordinates SQL query

Column Type Description
id BIGINT Identifier of the coordinate. (optional)
x FLOAT X value of the coordinate.
y FLOAT Y value of the coordinate.

When the value of id is not given then the coordinates will receive an id starting from 1, in the order given.

Description Of the Control parameters The control parameters are optional, and have a default value.

6.1. Routing Functions 133

pgRouting Manual, Release 2.3.2 (master)

Parameter Type Default Description
start_vid BIGINT 0 The greedy part of the im-

plementation will use this
identifier.

end_vid BIGINT 0 Last visiting vertex before
returning to start_vid.

max_processing_time FLOAT +infinity Stop the annealing pro-
cessing when the value is
reached.

tries_per_temperature INTEGER 500 Maximum number of
times a neighbor(s) is
searched in each tempera-
ture.

max_changes_per_tem-
perature

INTEGER 60 Maximum number of
times the solution is
changed in each tempera-
ture.

max_consecutive_non_-
changes

INTEGER 100 Maximum number of con-
secutive times the solution
is not changed in each tem-
perature.

initial_temperature FLOAT 100 Starting temperature.
final_temperature FLOAT 0.1 Ending temperature.
cooling_factor FLOAT 0.9 Value between between 0

and 1 (not including) used
to calculate the next tem-
perature.

randomize BOOLEAN true Choose the random seed
• true: Use current

time as seed
• false: Use 1 as seed.

Using this value will
get the same results
with the same data
in each execution.

Description of the return values Returns set of (seq, node, cost, agg_cost)

Column Type Description
seq INTEGER Row sequence.
node BIGINT Identifier of the

node/coordinate/point.
cost FLOAT

Cost to traverse from the current node ito the next node in the path sequence.

• 0 for the last row in the
path sequence.

agg_cost FLOAT
Aggregate cost from the node at seq = 1 to the current node.

• 0 for the first row in the
path sequence.

134 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

Examples

Example Skipping the Simulated Annealing & showing some process information

SET client_min_messages TO NOTICE;
SET
SELECT* from pgr_eucledianTSP(

$$
SELECT id, st_X(the_geom) AS x, st_Y(the_geom) AS y FROM edge_table_vertices_pgr
$$,
tries_per_temperature := 0,
randomize := false

);
NOTICE: pgr_eucledianTSP Processing Information
Initializing tsp class ---> tsp.greedyInitial ---> tsp.annealing ---> OK

Cycle(100) total changes =0 0 were because delta energy < 0
Total swaps: 3
Total slides: 0
Total reverses: 0
Times best tour changed: 4
Best cost reached = 18.7796
seq | node | cost | agg_cost

-----+------+------------------+------------------
1 | 1 | 1.4142135623731 | 0
2 | 3 | 1 | 1.4142135623731
3 | 4 | 1 | 2.41421356237309
4 | 9 | 0.58309518948453 | 3.41421356237309
5 | 16 | 0.58309518948453 | 3.99730875185762
6 | 6 | 1 | 4.58040394134215
7 | 5 | 1 | 5.58040394134215
8 | 8 | 1 | 6.58040394134215
9 | 7 | 1.58113883008419 | 7.58040394134215
10 | 14 | 1.499999999999 | 9.16154277142634
11 | 15 | 0.5 | 10.6615427714253
12 | 13 | 1.5 | 11.1615427714253
13 | 17 | 1.11803398874989 | 12.6615427714253
14 | 12 | 1 | 13.7795767601752
15 | 11 | 1 | 14.7795767601752
16 | 10 | 2 | 15.7795767601752
17 | 2 | 1 | 17.7795767601752
18 | 1 | 0 | 18.7795767601752

(18 rows)

The queries use the Sample Data network.

History

• New in version 2.3.0

See Also

• Traveling Sales Person

• http://en.wikipedia.org/wiki/Traveling_salesman_problem

• http://en.wikipedia.org/wiki/Simulated_annealing

Note: These signatures are being deprecated

6.1. Routing Functions 135

http://en.wikipedia.org/wiki/Traveling_salesman_problem
http://en.wikipedia.org/wiki/Simulated_annealing

pgRouting Manual, Release 2.3.2 (master)

-- (1)
pgr_costResult[] pgr_tsp(sql text, start_id integer)
pgr_costResult[] pgr_tsp(sql text, start_id integer, end_id integer)

-- (2)
record[] pgr_tsp(matrix float[][], start integer)
record[] pgr_tsp(matrix float[][], start integer, end integer)

• See http://docs.pgrouting.org/2.2/en/src/common/doc/types/cost_result.html

• See http://docs.pgrouting.org/2.2/en/src/tsp/doc/pgr_tsp.html

• For more details, see tsp_deprecated.

Use pgr_eucledianTSP insteadi of (1). Use pgr_TSP instead of (2).

General Information

Origin

The traveling sales person problem was studied in the 18th century by mathematicians Sir William
Rowam Hamilton and Thomas Penyngton Kirkman.

A discussion about the work of Hamilton & Kirkman can be found in the book Graph Theory (Biggs et al. 1976).

• ISBN-13: 978-0198539162

• ISBN-10: 0198539169

It is believed that the general form of the TSP have been first studied by Kalr Menger in Vienna and Harvard.
The problem was later promoted by Hassler, Whitney & Merrill at Princeton. A detailed description about the
connection between Menger & Whitney, and the development of the TSP can be found in On the history of
combinatorial optimization (till 1960)13

Problem Definition

Given a collection of cities and travel cost between each pair, find the cheapest way for visiting all of the cities
and returning to the starting point.

Characteristics

• The travel costs are symmetric:

– traveling costs from city A to city B are just as much as traveling from B to A.

• This problem is an NP-hard optimization problem.

• To calculate the number of different tours through 𝑛 cities:

– Given a starting city,

– There are 𝑛− 1 choices for the second city,

– And 𝑛− 2 choices for the third city, etc.

– Multiplying these together we get (𝑛− 1)! = (𝑛− 1)(𝑛− 2)..1.

– Now since our travel costs do not depend on the direction we take around the tour:

* this number by 2

* (𝑛− 1)!/2.

13http://www.cwi.nl/ lex/files/histco.ps

136 Chapter 6. Routing Functions

http://docs.pgrouting.org/2.2/en/src/common/doc/types/cost_result.html
http://docs.pgrouting.org/2.2/en/src/tsp/doc/pgr_tsp.html
http://www.cwi.nl/~lex/files/histco.ps
http://www.cwi.nl/~lex/files/histco.ps

pgRouting Manual, Release 2.3.2 (master)

TSP & Simulated Annealing

The simulated annealing algorithm was originally inspired from the process of annealing in metal work.

Annealing involves heating and cooling a material to alter its physical properties due to the changes
in its internal structure. As the metal cools its new structure becomes fixed, consequently causing the
metal to retain its newly obtained properties.

Pseudocode

Given an initial solution, the simulated annealing process, will start with a high temperature and gradually cool
down until the desired temperature is reached.

For each temperature, a neighbouring new solution snew is calculated. The higher the temperature the higher the
probability of accepting the new solution as a possible bester solution.

Once the desired temperature is reached, the best solution found is returned

Solution � initial_solution;

temperature � initial_temperature;
while (temperature > final_temperature) {

do tries_per_temperature times {
snew � neighbour(solution);
If P(E(solution), E(snew), T) random(0, 1)

solution � snew;
}

temperature � temperature * cooling factor;
}

Output: the best solution

pgRouting Implementation

pgRouting’s implementation adds some extra parameters to allow some exit controls within the simulated anneal-
ing process.

To cool down faster to the next temperature:

• max_changes_per_temperature: limits the number of changes in the solution per temperature

• max_consecutive_non_changes: limits the number of consecutive non changes per temperature

This is done by doing some book keeping on the times solution� snew; is executed.

• max_changes_per_temperature: Increases by one when solution changes

• max_consecutive_non_changes: Reset to 0 when solution changes, and increased each try

Additionally to stop the algorithm at a higher temperature than the desired one:

• max_processing_time: limits the time the simulated annealing is performed.

• book keeping is done to see if there was a change in solution on the last temperature

Note that, if no change was found in the first max_consecutive_non_changes tries, then the simulated annealing
will stop.

Solution � initial_solution;

temperature � initial_temperature;
while (temperature > final_temperature) {

6.1. Routing Functions 137

pgRouting Manual, Release 2.3.2 (master)

do tries_per_temperature times {
snew � neighbour(solution);
If P(E(solution), E(snew), T) random(0, 1)

solution � snew;

when max_changes_per_temperature is reached
or max_consecutive_non_changes is reached
BREAK;

}

temperature � temperature * cooling factor;
when no changes were done in the current temperature

or max_processing_time has being reached
BREAK;

}

Output: the best solution

Choosing parameters

There is no exact rule on how the parameters have to be chose, it will depend on the special characteristics of the
problem.

• Your computational time is crucial, then put your time limit to max_processing_time.

• Make the tries_per_temperture depending on the number of cities, for example:

– Useful to estimate the time it takes to do one cycle: use 1

* this will help to set a reasonable max_processing_time

– 𝑛 * (𝑛− 1)

– 500 * 𝑛

• For a faster decreasing the temperature set cooling_factor to a smaller number, and set to a higher number
for a slower decrease.

• When for the same given data the same results are needed, set randomize to false.

– When estimating how long it takes to do one cycle: use false

A recommendation is to play with the values and see what fits to the particular data.

Description Of the Control parameters

The control parameters are optional, and have a default value.

138 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

Parameter Type Default Description
start_vid BIGINT 0 The greedy part of the im-

plementation will use this
identifier.

end_vid BIGINT 0 Last visiting vertex before
returning to start_vid.

max_processing_time FLOAT +infinity Stop the annealing pro-
cessing when the value is
reached.

tries_per_temperature INTEGER 500 Maximum number of
times a neighbor(s) is
searched in each tempera-
ture.

max_changes_per_tem-
perature

INTEGER 60 Maximum number of
times the solution is
changed in each tempera-
ture.

max_consecutive_non_-
changes

INTEGER 100 Maximum number of con-
secutive times the solution
is not changed in each tem-
perature.

initial_temperature FLOAT 100 Starting temperature.
final_temperature FLOAT 0.1 Ending temperature.
cooling_factor FLOAT 0.9 Value between between 0

and 1 (not including) used
to calculate the next tem-
perature.

randomize BOOLEAN true Choose the random seed
• true: Use current

time as seed
• false: Use 1 as seed.

Using this value will
get the same results
with the same data
in each execution.

Deprecated functionality

The old functionality is deprecated:

• User can not control the execution.

• Not all valuable information is returned.

• Some returned column don not have meaningful names.

Example

Using the old functionality, for example

• id can not be of type BIGINT.

• id1 and id2 are meningless column names.

• Needs an index as parameter for the starting node.

SELECT * FROM pgr_TSP(
$$
SELECT id::INTEGER, st_X(the_geom) AS x, st_Y(the_geom)AS y FROM edge_table_vertices_pgr
$$

6.1. Routing Functions 139

pgRouting Manual, Release 2.3.2 (master)

, 1);
NOTICE: Deprecated Signature pgr_tsp(sql, integer, integer)
seq | id1 | id2 | cost

-----+-----+-----+-------------------
0 | 1 | 1 | 1
1 | 2 | 2 | 1
2 | 5 | 5 | 1
3 | 8 | 8 | 1
4 | 7 | 7 | 1.58113883008419
5 | 14 | 14 | 1.58113883008419
6 | 13 | 13 | 0.5
7 | 15 | 15 | 0.5
8 | 10 | 10 | 1
9 | 11 | 11 | 1.11803398874989
10 | 17 | 17 | 1.11803398874989
11 | 12 | 12 | 0.860232526704263
12 | 16 | 16 | 0.58309518948453
13 | 6 | 6 | 1
14 | 9 | 9 | 1
15 | 4 | 4 | 1
16 | 3 | 3 | 1.4142135623731

(17 rows)

With the new functionality:

• id can be of type BIGINT .

• There is an aggregate cost column.

• Instead of an index it uses the node identifier for the starting node.

SELECT * FROM pgr_eucledianTSP(
$$
SELECT id, st_X(the_geom) AS x, st_Y(the_geom)AS y FROM edge_table_vertices_pgr
$$,
1,
randomize := false

);
seq | node | cost | agg_cost

-----+------+-------------------+------------------
1 | 1 | 1.4142135623731 | 0
2 | 3 | 1 | 1.4142135623731
3 | 4 | 1 | 2.41421356237309
4 | 9 | 1 | 3.41421356237309
5 | 6 | 0.58309518948453 | 4.41421356237309
6 | 16 | 0.860232526704263 | 4.99730875185763
7 | 12 | 1.11803398874989 | 5.85754127856189
8 | 17 | 1.11803398874989 | 6.97557526731178
9 | 11 | 1 | 8.09360925606168
10 | 10 | 0.5 | 9.09360925606168
11 | 15 | 0.5 | 9.59360925606168
12 | 13 | 1.58113883008419 | 10.0936092560617
13 | 14 | 1.58113883008419 | 11.6747480861459
14 | 7 | 1 | 13.2558869162301
15 | 8 | 1 | 14.2558869162301
16 | 5 | 1 | 15.2558869162301
17 | 2 | 1 | 16.2558869162301
18 | 1 | 0 | 17.2558869162301

(18 rows)

Example

Using the old functionality, for example

140 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

• id, source, target can not be of type BIGINT.

• It does not return the cost column.

• Needs an index as parameter for the starting node.

• The identifiers in the result does not correspond to the indentifiers given as input.

SELECT * FROM pgr_TSP(
(SELECT * FROM pgr_vidsToDMatrix(

'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table',
(SELECT array_agg(id) from edge_table_vertices_pgr WHERE id < 14)::INTEGER[], false , true, true)

),
1

);
seq | id

-----+----
0 | 1
1 | 2
2 | 3
3 | 8
4 | 11
5 | 5
6 | 10
7 | 12
8 | 9
9 | 6
10 | 7
11 | 4
12 | 0

(13 rows)

With the new functionality:

• id, source, target can be of type BIGINT,

• There is an aggregate cost column and a cost column in the results.

• Instead of an index it uses the node identifier for the starting node.

SELECT * FROM pgr_TSP(
$$
SELECT * FROM pgr_dijkstraCostMatrix(

'SELECT id, source, target, cost, reverse_cost FROM edge_table',
(SELECT array_agg(id) from edge_table_vertices_pgr WHERE id < 14), false)

$$,
1,
randomize := false

);
seq | node | cost | agg_cost

-----+------+------+----------
1 | 1 | 3 | 0
2 | 4 | 1 | 3
3 | 9 | 1 | 4
4 | 12 | 1 | 5
5 | 11 | 2 | 6
6 | 13 | 1 | 8
7 | 10 | 1 | 9
8 | 5 | 2 | 10
9 | 7 | 1 | 12
10 | 8 | 2 | 13
11 | 6 | 1 | 15
12 | 3 | 1 | 16
13 | 2 | 1 | 17
14 | 1 | 0 | 18

6.1. Routing Functions 141

pgRouting Manual, Release 2.3.2 (master)

(14 rows)

See Also

• http://en.wikipedia.org/wiki/Traveling_salesman_problem

• http://en.wikipedia.org/wiki/Simulated_annealing

6.1.10 pgr_trsp - Turn Restriction Shortest Path (TRSP)

Name

pgr_trsp — Returns the shortest path with support for turn restrictions.

Synopsis

The turn restricted shorthest path (TRSP) is a shortest path algorithm that can optionally take into account com-
plicated turn restrictions like those found in real world navigable road networks. Performamnce wise it is nearly
as fast as the A* search but has many additional features like it works with edges rather than the nodes of the
network. Returns a set of pgr_costResult (seq, id1, id2, cost) rows, that make up a path.

pgr_costResult[] pgr_trsp(sql text, source integer, target integer,
directed boolean, has_rcost boolean [,restrict_sql text]);

pgr_costResult[] pgr_trsp(sql text, source_edge integer, source_pos float8,
target_edge integer, target_pos float8,

directed boolean, has_rcost boolean [,restrict_sql text]);

pgr_costResult3[] pgr_trspViaVertices(sql text, vids integer[],
directed boolean, has_rcost boolean
[, turn_restrict_sql text]);

pgr_costResult3[] pgr_trspViaEdges(sql text, eids integer[], pcts float8[],
directed boolean, has_rcost boolean
[, turn_restrict_sql text]);

Description

The Turn Restricted Shortest Path algorithm (TRSP) is similar to the Shooting Star algorithm in that you can
specify turn restrictions.

The TRSP setup is mostly the same as Dijkstra shortest path with the addition of an optional turn restriction table.
This provides an easy way of adding turn restrictions to a road network by placing them in a separate table.

sql a SQL query, which should return a set of rows with the following columns:

SELECT id, source, target, cost, [,reverse_cost] FROM edge_table

id int4 identifier of the edge

source int4 identifier of the source vertex

target int4 identifier of the target vertex

cost float8 value, of the edge traversal cost. A negative cost will prevent the edge
from being inserted in the graph.

142 Chapter 6. Routing Functions

http://en.wikipedia.org/wiki/Traveling_salesman_problem
http://en.wikipedia.org/wiki/Simulated_annealing

pgRouting Manual, Release 2.3.2 (master)

reverse_cost (optional) the cost for the reverse traversal of the edge. This is only
used when the directed and has_rcost parameters are true (see the above
remark about negative costs).

source int4 NODE id of the start point

target int4 NODE id of the end point

directed true if the graph is directed

has_rcost if true, the reverse_cost column of the SQL generated set of rows will be used for
the cost of the traversal of the edge in the opposite direction.

restrict_sql (optional) a SQL query, which should return a set of rows with the following columns:

SELECT to_cost, target_id, via_path FROM restrictions

to_cost float8 turn restriction cost

target_id int4 target id

via_path text comma separated list of edges in the reverse order of rule

Another variant of TRSP allows to specify EDGE id of source and target together with a fraction to interpolate
the position:

source_edge int4 EDGE id of the start edge

source_pos float8 fraction of 1 defines the position on the start edge

target_edge int4 EDGE id of the end edge

target_pos float8 fraction of 1 defines the position on the end edge

Returns set of pgr_costResult[]:

seq row sequence

id1 node ID

id2 edge ID (-1 for the last row)

cost cost to traverse from id1 using id2

History

• New in version 2.0.0

Support for Vias

Warning: The Support for Vias functions are prototypes. Not all corner cases are being considered.

We also have support for vias where you can say generate a from A to B to C, etc. We support both methods above
only you pass an array of vertices or and array of edges and percentage position along the edge in two arrays.

sql a SQL query, which should return a set of rows with the following columns:

SELECT id, source, target, cost, [,reverse_cost] FROM edge_table

id int4 identifier of the edge

source int4 identifier of the source vertex

target int4 identifier of the target vertex

cost float8 value, of the edge traversal cost. A negative cost will prevent the edge
from being inserted in the graph.

6.1. Routing Functions 143

pgRouting Manual, Release 2.3.2 (master)

reverse_cost (optional) the cost for the reverse traversal of the edge. This is only
used when the directed and has_rcost parameters are true (see the above
remark about negative costs).

vids int4[] An ordered array of NODE id the path will go through from start to end.

directed true if the graph is directed

has_rcost if true, the reverse_cost column of the SQL generated set of rows will be used for
the cost of the traversal of the edge in the opposite direction.

restrict_sql (optional) a SQL query, which should return a set of rows with the following columns:

SELECT to_cost, target_id, via_path FROM restrictions

to_cost float8 turn restriction cost

target_id int4 target id

via_path text commar separated list of edges in the reverse order of rule

Another variant of TRSP allows to specify EDGE id together with a fraction to interpolate the position:

eids int4 An ordered array of EDGE id that the path has to traverse

pcts float8 An array of fractional positions along the respective edges in eids, where 0.0 is the
start of the edge and 1.0 is the end of the eadge.

Returns set of pgr_costResult[]:

seq row sequence

id1 route ID

id2 node ID

id3 edge ID (-1 for the last row)

cost cost to traverse from id2 using id3

History

• Via Support prototypes new in version 2.1.0

Examples

Without turn restrictions

SELECT * FROM pgr_trsp(
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table',
7, 12, false, false

);
seq | id1 | id2 | cost

-----+-----+-----+------
0 | 7 | 6 | 1
1 | 8 | 7 | 1
2 | 5 | 8 | 1
3 | 6 | 9 | 1
4 | 9 | 15 | 1
5 | 12 | -1 | 0

(6 rows)

With turn restrictions

Then a query with turn restrictions is created as:

144 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

SELECT * FROM pgr_trsp(
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table',
2, 7, false, false,
'SELECT to_cost, target_id::int4,
from_edge || coalesce('','' || via_path, '''') AS via_path
FROM restrictions'

);
seq | id1 | id2 | cost

-----+-----+-----+------
0 | 2 | 4 | 1
1 | 5 | 10 | 1
2 | 10 | 12 | 1
3 | 11 | 11 | 1
4 | 6 | 8 | 1
5 | 5 | 7 | 1
6 | 8 | 6 | 1
7 | 7 | -1 | 0

(8 rows)

SELECT * FROM pgr_trsp(
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table',
7, 11, false, false,
'SELECT to_cost, target_id::int4,
from_edge || coalesce('','' || via_path, '''') AS via_path
FROM restrictions'

);
seq | id1 | id2 | cost

-----+-----+-----+------
0 | 7 | 6 | 1
1 | 8 | 7 | 1
2 | 5 | 8 | 1
3 | 6 | 9 | 1
4 | 9 | 15 | 1
5 | 12 | 13 | 1
6 | 11 | -1 | 0

(7 rows)

An example query using vertex ids and via points:

SELECT * FROM pgr_trspViaVertices(
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table',
ARRAY[2,7,11]::INTEGER[],
false, false,
'SELECT to_cost, target_id::int4, from_edge ||
coalesce('',''||via_path,'''') AS via_path FROM restrictions');

seq | id1 | id2 | id3 | cost
-----+-----+-----+-----+------

1 | 1 | 2 | 4 | 1
2 | 1 | 5 | 10 | 1
3 | 1 | 10 | 12 | 1
4 | 1 | 11 | 11 | 1
5 | 1 | 6 | 8 | 1
6 | 1 | 5 | 7 | 1
7 | 1 | 8 | 6 | 1
8 | 2 | 7 | 6 | 1
9 | 2 | 8 | 7 | 1
10 | 2 | 5 | 8 | 1
11 | 2 | 6 | 9 | 1
12 | 2 | 9 | 15 | 1
13 | 2 | 12 | 13 | 1
14 | 2 | 11 | -1 | 0

(14 rows)

6.1. Routing Functions 145

pgRouting Manual, Release 2.3.2 (master)

An example query using edge ids and vias:

SELECT * FROM pgr_trspViaEdges(
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost,
reverse_cost FROM edge_table',
ARRAY[2,7,11]::INTEGER[],
ARRAY[0.5, 0.5, 0.5]::FLOAT[],
true,
true,
'SELECT to_cost, target_id::int4, FROM_edge ||
coalesce('',''||via_path,'''') AS via_path FROM restrictions');

seq | id1 | id2 | id3 | cost
-----+-----+-----+-----+------

1 | 1 | -1 | 2 | 0.5
2 | 1 | 2 | 4 | 1
3 | 1 | 5 | 8 | 1
4 | 1 | 6 | 9 | 1
5 | 1 | 9 | 16 | 1
6 | 1 | 4 | 3 | 1
7 | 1 | 3 | 5 | 1
8 | 1 | 6 | 8 | 1
9 | 1 | 5 | 7 | 1
10 | 2 | 5 | 8 | 1
11 | 2 | 6 | 9 | 1
12 | 2 | 9 | 16 | 1
13 | 2 | 4 | 3 | 1
14 | 2 | 3 | 5 | 1
15 | 2 | 6 | 11 | 0.5

(15 rows)

The queries use the Sample Data network.

See Also

• pgr_costResult[]

• All pairs - All pair of vertices.

– pgr_floydWarshall - Floyd-Warshall’s Algorithm

– pgr_johnson- Johnson’s Algorithm

• pgr_astar - Shortest Path A*

• pgr_bdAstar - Bi-directional A* Shortest Path

• pgr_bdDijkstra - Bi-directional Dijkstra Shortest Path

• dijkstra - Dijkstra family functions

– pgr_dijkstra - Dijkstra’s shortest path algorithm.

– pgr_dijkstraCost - Use pgr_dijkstra to calculate the costs of the shortest paths.

• Driving Distance - Driving Distance

– pgr_drivingDistance - Driving Distance

– Post processing

* pgr_alphaShape - Alpha shape computation

* pgr_pointsAsPolygon - Polygon around set of points

• pgr_ksp - K-Shortest Path

146 Chapter 6. Routing Functions

pgRouting Manual, Release 2.3.2 (master)

• pgr_trsp - Turn Restriction Shortest Path (TRSP)

• Traveling Sales Person

– pgr_TSP - When input is a cost matrix.

– pgr_eucledianTSP - When input are coordinates.

6.1. Routing Functions 147

pgRouting Manual, Release 2.3.2 (master)

148 Chapter 6. Routing Functions

CHAPTER 7

Available Functions but not official pgRouting functions

• Stable proposed Functions

• Experimental and Proposed functions

7.1 Stable proposed Functions

Warning: These are proposed functions for next mayor release.
• They are not officially in the current release.
• They will likely officially be part of the next mayor release:

– The functions make use of ANY-INTEGER and ANY-NUMERICAL
– Name might not change. (But still can)
– Signature might not change. (But still can)
– Functionality might not change. (But still can)
– pgTap tests have being done. But might need more.
– Documentation might need refinement.

• As part of the Dijkstra - Family of functions

– pgr_dijkstraCostMatrix - proposed Use pgr_dijkstra to calculate a cost matrix.

– pgr_dijkstraVia - Proposed - Use pgr_dijkstra to make a route via vertices.

• A new withPoints - Family of functions

– pgr_withPoints - Proposed - Route from/to points anywhere on the graph.

– pgr_withPointsCost - Proposed - Costs of the shortest paths.

– pgr_withPointsCostMatrix - proposed - Use pgr_withPoints to calculate a cost matrix.

– pgr_withPointsKSP - Proposed - K shortest paths with points.

– pgr_withPointsDD - Proposed - Driving distance.

• A new Section

– Cost Matrix

7.1.1 pgr_dijkstraCostMatrix - proposed

Name

pgr_dijkstraCostMatrix - Calculates the a cost matrix using pgr_dijktras.

149

pgRouting Manual, Release 2.3.2 (master)

Warning: These are proposed functions for next mayor release.
• They are not officially in the current release.
• They will likely officially be part of the next mayor release:

– The functions make use of ANY-INTEGER and ANY-NUMERICAL
– Name might not change. (But still can)
– Signature might not change. (But still can)
– Functionality might not change. (But still can)
– pgTap tests have being done. But might need more.
– Documentation might need refinement.

1

Fig. 7.1: Boost Graph Inside

Synopsis

Using Dijkstra algorithm, calculate and return a cost matrix.

Signature Summary

pgr_dijkstraCostMatrix(edges_sql, start_vids)
pgr_dijkstraCostMatrix(edges_sql, start_vids, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Signatures

Minimal Signature

The minimal signature:

• Is for a directed graph.

pgr_dijkstraCostMatrix(edges_sql, start_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example Cost matrix for vertices 1, 2, 3, and 4.

SELECT * FROM pgr_dijkstraCostMatrix(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)

);
start_vid | end_vid | agg_cost

-----------+---------+----------
1 | 2 | 1
1 | 3 | 6
1 | 4 | 5
2 | 1 | 1
2 | 3 | 5
2 | 4 | 4
3 | 1 | 2
3 | 2 | 1
3 | 4 | 3
4 | 1 | 3

150 Chapter 7. Available Functions but not official pgRouting functions

http://www.boost.org/libs/graph

pgRouting Manual, Release 2.3.2 (master)

4 | 2 | 2
4 | 3 | 1

(12 rows)

Complete Signature

pgr_dijkstraCostMatrix(edges_sql, start_vids, directed:=true)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example Cost matrix for an undirected graph for vertices 1, 2, 3, and 4.

This example returns a symmetric cost matrix.

SELECT * FROM pgr_dijkstraCostMatrix(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
false

);
start_vid | end_vid | agg_cost

-----------+---------+----------
1 | 2 | 1
1 | 3 | 2
1 | 4 | 3
2 | 1 | 1
2 | 3 | 1
2 | 4 | 2
3 | 1 | 2
3 | 2 | 1
3 | 4 | 1
4 | 1 | 3
4 | 2 | 2
4 | 3 | 1

(12 rows)

Description of the Signatures

Description of the edges_sql query

edges_sql an SQL query, which should return a set of rows with the following columns:

7.1. Stable proposed Functions 151

pgRouting Manual, Release 2.3.2 (master)

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end

point vertex of the edge.
target ANY-INTEGER Identifier of the second end

point vertex of the edge.
cost ANY-NUMERICAL

Weight of the edge (source, target)

• When neg-
ative: edge
(source, tar-
get) does not
exist, therefore
it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1
Weight of the edge (target, source),

• When nega-
tive: edge (tar-
get, source)
does not exist,
therefore it’s
not part of the
graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Pa-
rame-
ter

Type Description

edges_-
sql

TEXT Edges SQL query as described above.

start_-
vids

ARRAY[ANY-INTEGER]Array of identifiers of the vertices.

di-
rected

BOOLEAN (optional). When false the graph is considered as Undirected. Default is
true which considers the graph as Directed.

Description of the return values

Returns set of (start_vid, end_vid, agg_cost)

Column Type Description
start_vid BIGINT Identifier of the starting vertex.
end_vid BIGINT Identifier of the ending vertex.
agg_cost FLOAT Aggregate cost of the shortest path from start_vid to end_vid.

152 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

Examples

Example Use with tsp

SELECT * FROM pgr_TSP(
$$
SELECT * FROM pgr_dijkstraCostMatrix(

'SELECT id, source, target, cost, reverse_cost FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
false

)
$$,
randomize := false

);
seq | node | cost | agg_cost

-----+------+------+----------
1 | 1 | 1 | 0
2 | 2 | 1 | 1
3 | 3 | 1 | 2
4 | 4 | 3 | 3
5 | 1 | 0 | 6

(5 rows)

See Also

• Dijkstra - Family of functions

• Cost Matrix

• Traveling Sales Person

• The queries use the Sample Data network.

Indices and tables

• genindex

• search

7.1.2 pgr_dijkstraVia - Proposed

Name

pgr_dijkstraVia — Using dijkstra algorithm, it finds the route that goes through a list of vertices.

2

Fig. 7.2: Boost Graph Inside

Synopsis

Given a list of vertices and a graph, this function is equivalent to finding the shortest path between 𝑣𝑒𝑟𝑡𝑒𝑥𝑖 and
𝑣𝑒𝑟𝑡𝑒𝑥𝑖+1 for all 𝑖 < 𝑠𝑖𝑧𝑒_𝑜𝑓(𝑣𝑒𝑟𝑡𝑒𝑥𝑣𝑖𝑎).

7.1. Stable proposed Functions 153

http://www.boost.org/libs/graph

pgRouting Manual, Release 2.3.2 (master)

The paths represents the sections of the route.

Note: This is a proposed function

Signatrue Summary

pgr_dijkstraVia(edges_sql, via_vertices)
pgr_dijkstraVia(edges_sql, via_vertices, directed, strict, U_turn_on_edge)

RETURNS SET OF (seq, path_pid, path_seq, start_vid, end_vid,
node, edge, cost, agg_cost, route_agg_cost) or EMPTY SET

Signatures

Minimal Signature

pgr_dijkstraVia(edges_sql, via_vertices)
RETURNS SET OF (seq, path_pid, path_seq, start_vid, end_vid,

node, edge, cost, agg_cost, route_agg_cost) or EMPTY SET

Example Find the route that visits the vertices 1 3 9 in that order

SELECT * FROM pgr_dijkstraVia(
'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
ARRAY[1, 3, 9]

);
seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost

-----+---------+----------+-----------+---------+------+------+------+----------+----------------
1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 0 | 0
2 | 1 | 2 | 1 | 3 | 2 | 4 | 1 | 1 | 1
3 | 1 | 3 | 1 | 3 | 5 | 8 | 1 | 2 | 2
4 | 1 | 4 | 1 | 3 | 6 | 9 | 1 | 3 | 3
5 | 1 | 5 | 1 | 3 | 9 | 16 | 1 | 4 | 4
6 | 1 | 6 | 1 | 3 | 4 | 3 | 1 | 5 | 5
7 | 1 | 7 | 1 | 3 | 3 | -1 | 0 | 6 | 6
8 | 2 | 1 | 3 | 9 | 3 | 5 | 1 | 0 | 6
9 | 2 | 2 | 3 | 9 | 6 | 9 | 1 | 1 | 7
10 | 2 | 3 | 3 | 9 | 9 | -2 | 0 | 2 | 8

(10 rows)

Complete Signature

pgr_dijkstraVia(edges_sql, via_vertices, directed, strict, U_turn_on_edge)
RETURNS SET OF (seq, path_pid, path_seq, start_vid, end_vid,

node, edge, cost, agg_cost, route_agg_cost) or EMPTY SET

Example Find the route that visits the vertices 1 3 9 in that order on an undirected graph, avoiding
U-turns when possible

SELECT * FROM pgr_dijkstraVia(
'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
ARRAY[1, 3, 9], false, strict:=true, U_turn_on_edge:=false

);
seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost

-----+---------+----------+-----------+---------+------+------+------+----------+----------------
1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 0 | 0
2 | 1 | 2 | 1 | 3 | 2 | 2 | 1 | 1 | 1

154 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

3 | 1 | 3 | 1 | 3 | 3 | -1 | 0 | 2 | 2
4 | 2 | 1 | 3 | 9 | 3 | 5 | 1 | 0 | 2
5 | 2 | 2 | 3 | 9 | 6 | 9 | 1 | 1 | 3
6 | 2 | 3 | 3 | 9 | 9 | -2 | 0 | 2 | 4

(6 rows)

Description of the Signature

Description of the edges_sql query

edges_sql an SQL query, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end

point vertex of the edge.
target ANY-INTEGER Identifier of the second end

point vertex of the edge.
cost ANY-NUMERICAL

Weight of the edge (source, target)

• When neg-
ative: edge
(source, tar-
get) does not
exist, therefore
it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1
Weight of the edge (target, source),

• When nega-
tive: edge (tar-
get, source)
does not exist,
therefore it’s
not part of the
graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

7.1. Stable proposed Functions 155

pgRouting Manual, Release 2.3.2 (master)

Description of the parameters of the signatures

Parameter Type Default Description
edges_sql TEXT SQL query as described

above.
via_vertices ARRAY[ANY-INTEGER] Array of ordered vertices

identifiers that are going to
be visited.

directed BOOLEAN true
• When true Graph

is considered Di-
rected

• When false the
graph is considered
as Undirected.

strict BOOLEAN false
• When false ig-

nores missing paths
returning all paths
found

• When true if a
path is missing stops
and returns EMPTY
SET

U_turn_on_edge BOOLEAN true
• When true depart-

ing from a visited
vertex will not try to
avoid using the edge
used to reach it. In
other words, U turn
using the edge with
same id is allowed.

• When false when
a departing from a
visited vertex tries
to avoid using the
edge used to reach
it. In other words, U
turn using the edge
with same id is used
when no other path
is found.

156 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

Description of the parameters of the signatures

Param-
eter

Type Description

edges_-
sql

TEXT SQL query as described above.

via_-
vertices

ARRAY[ANY-INTEGER]Array of vertices identifiers

di-
rected

BOOLEAN (optional) Default is true (is directed). When set to false the graph is considered
as Undirected

strict BOOLEAN (optional) ignores if a subsection of the route is missing and returns everything it
found Default is true (is directed). When set to false the graph is considered as
Undirected

U_-
turn_-
on_-
edge

BOOLEAN (optional) Default is true (is directed). When set to false the graph is considered
as Undirected

Description of the return values

Returns set of (start_vid, end_vid, agg_cost)

Column Type Description
seq BIGINTSequential value starting from 1.
path_pid BIGINTIdentifier of the path.
path_seq BIGINTSequential value starting from 1 for the path.
start_vid BIGINTIdentifier of the starting vertex of the path.
end_vid BIGINTIdentifier of the ending vertex of the path.
node BIGINTIdentifier of the node in the path from start_vid to end_vid.
edge BIGINTIdentifier of the edge used to go from node to the next node in the path sequence. -1 for

the last node of the path. -2 for the last node of the route.
cost FLOAT Cost to traverse from node using edge to the next node in the route sequence.
agg_cost FLOAT Total cost from start_vid to end_vid of the path.
route_-
agg_cost

FLOAT Total cost from start_vid of path_pid = 1 to end_vid of the current
path_pid .

Examples

Example 1 Find the route that visits the vertices 1 5 3 9 4 in that order

SELECT * FROM pgr_dijkstraVia(
'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
ARRAY[1, 5, 3, 9, 4]

);
seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost

-----+---------+----------+-----------+---------+------+------+------+----------+----------------
1 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 0 | 0
2 | 1 | 2 | 1 | 5 | 2 | 4 | 1 | 1 | 1
3 | 1 | 3 | 1 | 5 | 5 | -1 | 0 | 2 | 2
4 | 2 | 1 | 5 | 3 | 5 | 8 | 1 | 0 | 2
5 | 2 | 2 | 5 | 3 | 6 | 9 | 1 | 1 | 3
6 | 2 | 3 | 5 | 3 | 9 | 16 | 1 | 2 | 4
7 | 2 | 4 | 5 | 3 | 4 | 3 | 1 | 3 | 5
8 | 2 | 5 | 5 | 3 | 3 | -1 | 0 | 4 | 6
9 | 3 | 1 | 3 | 9 | 3 | 5 | 1 | 0 | 6
10 | 3 | 2 | 3 | 9 | 6 | 9 | 1 | 1 | 7
11 | 3 | 3 | 3 | 9 | 9 | -1 | 0 | 2 | 8

7.1. Stable proposed Functions 157

pgRouting Manual, Release 2.3.2 (master)

12 | 4 | 1 | 9 | 4 | 9 | 16 | 1 | 0 | 8
13 | 4 | 2 | 9 | 4 | 4 | -2 | 0 | 1 | 9

(13 rows)

Example 2 What’s the aggregate cost of the third path?

SELECT agg_cost FROM pgr_dijkstraVia(
'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
ARRAY[1, 5, 3, 9, 4]

)
WHERE path_id = 3 AND edge <0;
agg_cost

2

(1 row)

Example 3 What’s the route’s aggregate cost of the route at the end of the third path?

SELECT route_agg_cost FROM pgr_dijkstraVia(
'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
ARRAY[1, 5, 3, 9, 4]

)
WHERE path_id = 3 AND edge < 0;
route_agg_cost

8

(1 row)

Example 4 How are the nodes visited in the route?

SELECT row_number() over () as node_seq, node
FROM pgr_dijkstraVia(

'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
ARRAY[1, 5, 3, 9, 4]

)
WHERE edge <> -1 ORDER BY seq;
node_seq | node

----------+------
1 | 1
2 | 2
3 | 5
4 | 6
5 | 9
6 | 4
7 | 3
8 | 6
9 | 9

10 | 4
(10 rows)

Example 5 What are the aggregate costs of the route when the visited vertices are reached?

SELECT path_id, route_agg_cost FROM pgr_dijkstraVia(
'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
ARRAY[1, 5, 3, 9, 4]

)
WHERE edge < 0;
path_id | route_agg_cost

---------+----------------
1 | 2

158 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

2 | 6
3 | 8
4 | 9

(4 rows)

Example 6 show the route’s seq and aggregate cost and a status of “passes in front” or “visits” node
9

SELECT seq, route_agg_cost, node, agg_cost ,
CASE WHEN edge = -1 THEN 'visits'
ELSE 'passes in front'
END as status
FROM pgr_dijkstraVia(

'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
ARRAY[1, 5, 3, 9, 4])

WHERE node = 9 and (agg_cost <> 0 or seq = 1);
seq | route_agg_cost | node | agg_cost | status

-----+----------------+------+----------+-----------------
6 | 4 | 9 | 2 | passes in front
11 | 8 | 9 | 2 | visits

(2 rows)

See Also

• http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

• Sample Data network.

Indices and tables

• genindex

• search

7.1.3 withPoints - Family of functions

When points are also given as input:

• pgr_withPoints - Proposed - Route from/to points anywhere on the graph.

• pgr_withPointsCost - Proposed - Costs of the shortest paths.

• pgr_withPointsCostMatrix - proposed - Costs of the shortest paths.

• pgr_withPointsKSP - Proposed - K shortest paths.

• pgr_withPointsDD - Proposed - Driving distance.

pgr_withPoints - Proposed

Name

pgr_withPoints - Returns the shortest path in a graph with additional temporary vertices.

7.1. Stable proposed Functions 159

http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

pgRouting Manual, Release 2.3.2 (master)

Warning: These are proposed functions for next mayor release.
• They are not officially in the current release.
• They will likely officially be part of the next mayor release:

– The functions make use of ANY-INTEGER and ANY-NUMERICAL
– Name might not change. (But still can)
– Signature might not change. (But still can)
– Functionality might not change. (But still can)
– pgTap tests have being done. But might need more.
– Documentation might need refinement.

3

Fig. 7.3: Boost Graph Inside

Synopsis

Modify the graph to include points defined by points_sql. Using Dijkstra algorithm, find the shortest path(s)

Characteristics:

The main Characteristics are:

• Process is done only on edges with positive costs.

• Vertices of the graph are:

– positive when it belongs to the edges_sql

– negative when it belongs to the points_sql

• Values are returned when there is a path.

• When the starting vertex and ending vertex are the same, there is no path.

• The agg_cost the non included values (v, v) is 0

• When the starting vertex and ending vertex are the different and there is no path:

• The agg_cost the non included values (u, v) is ∞

• For optimization purposes, any duplicated value in the start_vids or end_vids are ignored.

• The returned values are ordered:

– start_vid ascending

– end_vid ascending

• Running time: 𝑂(|𝑠𝑡𝑎𝑟𝑡_𝑣𝑖𝑑𝑠|(𝑉 log 𝑉 + 𝐸))

Signature Summary

pgr_withPoints(edges_sql, points_sql, start_vid, end_vid)
pgr_withPoints(edges_sql, points_sql, start_vid, end_vid, directed, driving_side, details)
pgr_withPoints(edges_sql, points_sql, start_vid, end_vids, directed, driving_side, details)
pgr_withPoints(edges_sql, points_sql, start_vids, end_vid, directed, driving_side, details)

160 Chapter 7. Available Functions but not official pgRouting functions

http://www.boost.org/libs/graph

pgRouting Manual, Release 2.3.2 (master)

pgr_withPoints(edges_sql, points_sql, start_vids, end_vids, directed, driving_side, details)
RETURNS SET OF (seq, path_seq, [start_vid,] [end_vid,] node, edge, cost, agg_cost)

Signatures

Minimal Use

The minimal signature:

• Is for a directed graph.

• The driving side is set as b both. So arriving/departing to/from the point(s) can be in any direction.

• No details are given about distance of other points of points_sql query.

pgr_withPoints(edges_sql, points_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)

Example From point 1 to point 3

SELECT * FROM pgr_withPoints(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, -3);

seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------

1 | 1 | -1 | 1 | 0.6 | 0
2 | 2 | 2 | 4 | 1 | 0.6
3 | 3 | 5 | 10 | 1 | 1.6
4 | 4 | 10 | 12 | 0.6 | 2.6
5 | 5 | -3 | -1 | 0 | 3.2

(5 rows)

One to One
pgr_withPoints(edges_sql, points_sql, start_vid, end_vid,

directed:=true, driving_side:='b', details:=false)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)

Example From point 1 to vertex 3

SELECT * FROM pgr_withPoints(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, 3,
details := true);

seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------

1 | 1 | -1 | 1 | 0.6 | 0
2 | 2 | 2 | 4 | 0.7 | 0.6
3 | 3 | -6 | 4 | 0.3 | 1.3
4 | 4 | 5 | 8 | 1 | 1.6
5 | 5 | 6 | 9 | 1 | 2.6
6 | 6 | 9 | 16 | 1 | 3.6
7 | 7 | 4 | 3 | 1 | 4.6
8 | 8 | 3 | -1 | 0 | 5.6

(8 rows)

One to Many

7.1. Stable proposed Functions 161

pgRouting Manual, Release 2.3.2 (master)

pgr_withPoints(edges_sql, points_sql, start_vid, end_vids,
directed:=true, driving_side:='b', details:=false)

RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost)

Example From point 1 to point 3 and vertex 5

SELECT * FROM pgr_withPoints(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, ARRAY[-3,5]);

seq | path_seq | end_pid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------

1 | 1 | -3 | -1 | 1 | 0.6 | 0
2 | 2 | -3 | 2 | 4 | 1 | 0.6
3 | 3 | -3 | 5 | 10 | 1 | 1.6
4 | 4 | -3 | 10 | 12 | 0.6 | 2.6
5 | 5 | -3 | -3 | -1 | 0 | 3.2
6 | 1 | 5 | -1 | 1 | 0.6 | 0
7 | 2 | 5 | 2 | 4 | 1 | 0.6
8 | 3 | 5 | 5 | -1 | 0 | 1.6

(8 rows)

Many to One
pgr_withPoints(edges_sql, points_sql, start_vids, end_vid,

directed:=true, driving_side:='b', details:=false)
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost)

Example From point 1 and vertex 2 to point 3

SELECT * FROM pgr_withPoints(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
ARRAY[-1,2], -3);

seq | path_seq | start_pid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------

1 | 1 | -1 | -1 | 1 | 0.6 | 0
2 | 2 | -1 | 2 | 4 | 1 | 0.6
3 | 3 | -1 | 5 | 10 | 1 | 1.6
4 | 4 | -1 | 10 | 12 | 0.6 | 2.6
5 | 5 | -1 | -3 | -1 | 0 | 3.2
6 | 1 | 2 | 2 | 4 | 1 | 0
7 | 2 | 2 | 5 | 10 | 1 | 1
8 | 3 | 2 | 10 | 12 | 0.6 | 2
9 | 4 | 2 | -3 | -1 | 0 | 2.6

(9 rows)

Many to Many
pgr_withPoints(edges_sql, points_sql, start_vids, end_vids,

directed:=true, driving_side:='b', details:=false)
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

Example From point 1 and vertex 2 to point 3 and vertex 7

SELECT * FROM pgr_withPoints(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
ARRAY[-1,2], ARRAY[-3,7]);

seq | path_seq | start_pid | end_pid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------

162 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

1 | 1 | -1 | -3 | -1 | 1 | 0.6 | 0
2 | 2 | -1 | -3 | 2 | 4 | 1 | 0.6
3 | 3 | -1 | -3 | 5 | 10 | 1 | 1.6
4 | 4 | -1 | -3 | 10 | 12 | 0.6 | 2.6
5 | 5 | -1 | -3 | -3 | -1 | 0 | 3.2
6 | 1 | -1 | 7 | -1 | 1 | 0.6 | 0
7 | 2 | -1 | 7 | 2 | 4 | 1 | 0.6
8 | 3 | -1 | 7 | 5 | 7 | 1 | 1.6
9 | 4 | -1 | 7 | 8 | 6 | 1 | 2.6
10 | 5 | -1 | 7 | 7 | -1 | 0 | 3.6
11 | 1 | 2 | -3 | 2 | 4 | 1 | 0
12 | 2 | 2 | -3 | 5 | 10 | 1 | 1
13 | 3 | 2 | -3 | 10 | 12 | 0.6 | 2
14 | 4 | 2 | -3 | -3 | -1 | 0 | 2.6
15 | 1 | 2 | 7 | 2 | 4 | 1 | 0
16 | 2 | 2 | 7 | 5 | 7 | 1 | 1
17 | 3 | 2 | 7 | 8 | 6 | 1 | 2
18 | 4 | 2 | 7 | 7 | -1 | 0 | 3

(18 rows)

Description of the Signatures

Description of the edges_sql query

edges_sql an SQL query, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end

point vertex of the edge.
target ANY-INTEGER Identifier of the second end

point vertex of the edge.
cost ANY-NUMERICAL

Weight of the edge (source, target)

• When neg-
ative: edge
(source, tar-
get) does not
exist, therefore
it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1
Weight of the edge (target, source),

• When nega-
tive: edge (tar-
get, source)
does not exist,
therefore it’s
not part of the
graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

7.1. Stable proposed Functions 163

pgRouting Manual, Release 2.3.2 (master)

Description of the Points SQL query

points_sql an SQL query, which should return a set of rows with the following columns:

Column Type Description
pid ANY-INTEGER

(optional) Identifier of the point.
• If column present, it can

not be NULL.
• If column not present, a

sequential identifier will
be given automatically.

edge_id ANY-INTEGER Identifier of the “closest” edge to the
point.

fraction ANY-NUMERICAL Value in <0,1> that indicates the
relative postition from the first end
point of the edge.

side CHAR
(optional) Value in [’b’, ‘r’, ‘l’, NULL] indicating if the point is:

• In the right, left of the
edge or

• If it doesn’t matter with
‘b’ or NULL.

• If column not present
‘b’ is considered.

Where:

ANY-INTEGER smallint, int, bigint

ANY-NUMERICAL smallint, int, bigint, real, float

164 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

Description of the parameters of the signatures

Parameter Type Description
edges_sql TEXT Edges SQL query as described

above.
points_sql TEXT Points SQL query as described

above.
start_vid ANY-INTEGER Starting vertex identifier. When

negative: is a point’s pid.
end_vid ANY-INTEGER Ending vertex identifier. When neg-

ative: is a point’s pid.
start_vids ARRAY[ANY-INTEGER] Array of identifiers of starting ver-

tices. When negative: is a point’s
pid.

end_vids ARRAY[ANY-INTEGER] Array of identifiers of ending ver-
tices. When negative: is a point’s
pid.

directed BOOLEAN (optional). When false the graph
is considered as Undirected. De-
fault is true which considers the
graph as Directed.

driving_side CHAR
(optional) Value in [’b’, ‘r’, ‘l’, NULL] indicating if the driving side is:

• In the right or left or
• If it doesn’t matter with

‘b’ or NULL.
• If column not present

‘b’ is considered.

details BOOLEAN (optional). When true the results
will include the points in points_-
sql that are in the path. Default is
false which ignores other points
of the points_sql.

Description of the return values Returns set of (seq, [path_seq,] [start_vid,] [end_vid,]
node, edge, cost, agg_cost)

7.1. Stable proposed Functions 165

pgRouting Manual, Release 2.3.2 (master)

Column Type Description
seq INTEGER Row sequence.
path_seq INTEGER Path sequence that indicates the rel-

ative position on the path.
start_vid BIGINT Identifier of the starting vertex.

When negative: is a point’s pid.
end_vid BIGINT Identifier of the ending vertex.

When negative: is a point’s pid.
node BIGINT

Identifier of the node:
• A positive value indi-

cates the node is a ver-
tex of edges_sql.

• A negative value indi-
cates the node is a point
of points_sql.

edge BIGINT
Identifier of the edge used to go from node to the next node in the path sequence.

• -1 for the last row in the
path sequence.

cost FLOAT
Cost to traverse from node using edge to the next node in the path sequence.

• 0 for the last row in the
path sequence.

agg_cost FLOAT
Aggregate cost from start_pid to node.

• 0 for the first row in the
path sequence.

Examples

Example Which path (if any) passes in front of point 6 or vertex 6 with right side driving topology.

SELECT ('(' || start_pid || ' => ' || end_pid ||') at ' || path_seq || 'th step:')::TEXT AS path_at,
CASE WHEN edge = -1 THEN ' visits'

ELSE ' passes in front of'
END as status,
CASE WHEN node < 0 THEN 'Point'

ELSE 'Vertex'
END as is_a,
abs(node) as id

FROM pgr_withPoints(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
ARRAY[1,-1], ARRAY[-2,-3,-6,3,6],
driving_side := 'r',
details := true)

WHERE node IN (-6,6);
path_at | status | is_a | id

-------------------------+---------------------+--------+----
(-1 => -6) at 4th step: | visits | Point | 6
(-1 => -3) at 4th step: | passes in front of | Point | 6
(-1 => -2) at 4th step: | passes in front of | Point | 6

166 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

(-1 => -2) at 6th step: | passes in front of | Vertex | 6
(-1 => 3) at 4th step: | passes in front of | Point | 6
(-1 => 3) at 6th step: | passes in front of | Vertex | 6
(-1 => 6) at 4th step: | passes in front of | Point | 6
(-1 => 6) at 6th step: | visits | Vertex | 6
(1 => -6) at 3th step: | visits | Point | 6
(1 => -3) at 3th step: | passes in front of | Point | 6
(1 => -2) at 3th step: | passes in front of | Point | 6
(1 => -2) at 5th step: | passes in front of | Vertex | 6
(1 => 3) at 3th step: | passes in front of | Point | 6
(1 => 3) at 5th step: | passes in front of | Vertex | 6
(1 => 6) at 3th step: | passes in front of | Point | 6
(1 => 6) at 5th step: | visits | Vertex | 6

(16 rows)

Example Which path (if any) passes in front of point 6 or vertex 6 with left side driving topology.

SELECT ('(' || start_pid || ' => ' || end_pid ||') at ' || path_seq || 'th step:')::TEXT AS path_at,
CASE WHEN edge = -1 THEN ' visits'

ELSE ' passes in front of'
END as status,
CASE WHEN node < 0 THEN 'Point'

ELSE 'Vertex'
END as is_a,
abs(node) as id

FROM pgr_withPoints(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
ARRAY[1,-1], ARRAY[-2,-3,-6,3,6],
driving_side := 'l',
details := true)

WHERE node IN (-6,6);
path_at | status | is_a | id

-------------------------+---------------------+--------+----
(-1 => -6) at 3th step: | visits | Point | 6
(-1 => -3) at 3th step: | passes in front of | Point | 6
(-1 => -2) at 3th step: | passes in front of | Point | 6
(-1 => -2) at 5th step: | passes in front of | Vertex | 6
(-1 => 3) at 3th step: | passes in front of | Point | 6
(-1 => 3) at 5th step: | passes in front of | Vertex | 6
(-1 => 6) at 3th step: | passes in front of | Point | 6
(-1 => 6) at 5th step: | visits | Vertex | 6
(1 => -6) at 4th step: | visits | Point | 6
(1 => -3) at 4th step: | passes in front of | Point | 6
(1 => -2) at 4th step: | passes in front of | Point | 6
(1 => -2) at 6th step: | passes in front of | Vertex | 6
(1 => 3) at 4th step: | passes in front of | Point | 6
(1 => 3) at 6th step: | passes in front of | Vertex | 6
(1 => 6) at 4th step: | passes in front of | Point | 6
(1 => 6) at 6th step: | visits | Vertex | 6

(16 rows)

Example Many to many example with a twist: on undirected graph and showing details.

SELECT * FROM pgr_withPoints(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
ARRAY[-1,2], ARRAY[-3,7],
directed := false,
details := true);

seq | path_seq | start_pid | end_pid | node | edge | cost | agg_cost

7.1. Stable proposed Functions 167

pgRouting Manual, Release 2.3.2 (master)

-----+----------+-----------+---------+------+------+------+----------
1 | 1 | -1 | -3 | -1 | 1 | 0.6 | 0
2 | 2 | -1 | -3 | 2 | 4 | 0.7 | 0.6
3 | 3 | -1 | -3 | -6 | 4 | 0.3 | 1.3
4 | 4 | -1 | -3 | 5 | 10 | 1 | 1.6
5 | 5 | -1 | -3 | 10 | 12 | 0.6 | 2.6
6 | 6 | -1 | -3 | -3 | -1 | 0 | 3.2
7 | 1 | -1 | 7 | -1 | 1 | 0.6 | 0
8 | 2 | -1 | 7 | 2 | 4 | 0.7 | 0.6
9 | 3 | -1 | 7 | -6 | 4 | 0.3 | 1.3
10 | 4 | -1 | 7 | 5 | 7 | 1 | 1.6
11 | 5 | -1 | 7 | 8 | 6 | 0.7 | 2.6
12 | 6 | -1 | 7 | -4 | 6 | 0.3 | 3.3
13 | 7 | -1 | 7 | 7 | -1 | 0 | 3.6
14 | 1 | 2 | -3 | 2 | 4 | 0.7 | 0
15 | 2 | 2 | -3 | -6 | 4 | 0.3 | 0.7
16 | 3 | 2 | -3 | 5 | 10 | 1 | 1
17 | 4 | 2 | -3 | 10 | 12 | 0.6 | 2
18 | 5 | 2 | -3 | -3 | -1 | 0 | 2.6
19 | 1 | 2 | 7 | 2 | 4 | 0.7 | 0
20 | 2 | 2 | 7 | -6 | 4 | 0.3 | 0.7
21 | 3 | 2 | 7 | 5 | 7 | 1 | 1
22 | 4 | 2 | 7 | 8 | 6 | 0.7 | 2
23 | 5 | 2 | 7 | -4 | 6 | 0.3 | 2.7
24 | 6 | 2 | 7 | 7 | -1 | 0 | 3

(24 rows)

The queries use the Sample Data network.

History

• Proposed in version 2.2

See Also

• withPoints - Family of functions

Indices and tables

• genindex

• search

pgr_withPointsCost - Proposed

Name

pgr_withPointsCost - Calculates the shortest path and returns only the aggregate cost of the shortest path(s)
found, for the combination of points given.

168 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

Warning: These are proposed functions for next mayor release.
• They are not officially in the current release.
• They will likely officially be part of the next mayor release:

– The functions make use of ANY-INTEGER and ANY-NUMERICAL
– Name might not change. (But still can)
– Signature might not change. (But still can)
– Functionality might not change. (But still can)
– pgTap tests have being done. But might need more.
– Documentation might need refinement.

4

Fig. 7.4: Boost Graph Inside

Synopsis

Modify the graph to include points defined by points_sql. Using Dijkstra algorithm, return only the aggregate cost
of the shortest path(s) found.

Characteristics:

The main Characteristics are:

• It does not return a path.

• Returns the sum of the costs of the shortest path for pair combination of vertices in the modified graph.

• Vertices of the graph are:

– positive when it belongs to the edges_sql

– negative when it belongs to the points_sql

• Process is done only on edges with positive costs.

• Values are returned when there is a path.

– The returned values are in the form of a set of (start_vid, end_vid, agg_cost).

– When the starting vertex and ending vertex are the same, there is no path.

* The agg_cost in the non included values (v, v) is 0

– When the starting vertex and ending vertex are the different and there is no path.

* The agg_cost in the non included values (u, v) is ∞

• If the values returned are stored in a table, the unique index would be the pair: (start_vid, end_vid).

• For undirected graphs, the results are symmetric.

– The agg_cost of (u, v) is the same as for (v, u).

• For optimization purposes, any duplicated value in the start_vids or end_vids is ignored.

• The returned values are ordered:

– start_vid ascending

– end_vid ascending

7.1. Stable proposed Functions 169

http://www.boost.org/libs/graph

pgRouting Manual, Release 2.3.2 (master)

• Running time: 𝑂(|𝑠𝑡𝑎𝑟𝑡_𝑣𝑖𝑑𝑠| * (𝑉 log 𝑉 + 𝐸))

Signature Summary

pgr_withPointsCost(edges_sql, points_sql, start_vid, end_vid, directed, driving_side)
pgr_withPointsCost(edges_sql, points_sql, start_vid, end_vids, directed, driving_side)
pgr_withPointsCost(edges_sql, points_sql, start_vids, end_vid, directed, driving_side)
pgr_withPointsCost(edges_sql, points_sql, start_vids, end_vids, directed, driving_side)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Note: There is no details flag, unlike the other members of the withPoints family of functions.

Signatures

Minimal Use

The minimal signature:

• Is for a directed graph.

• The driving side is set as b both. So arriving/departing to/from the point(s) can be in any direction.

pgr_withPointsCost(edges_sql, points_sql, start_vid, end_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example

SELECT * FROM pgr_withPointsCost(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, -3);

start_pid | end_pid | agg_cost
-----------+---------+----------

-1 | -3 | 3.2
(1 row)

One to One
pgr_withPointsCost(edges_sql, points_sql, start_vid, end_vid,

directed:=true, driving_side:='b')
RETURNS SET OF (seq, node, edge, cost, agg_cost)

Example

SELECT * FROM pgr_withPointsCost(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, 3,
directed := false);

start_pid | end_pid | agg_cost
-----------+---------+----------

-1 | 3 | 1.6
(1 row)

One to Many
pgr_withPointsCost(edges_sql, points_sql, start_vid, end_vids,

directed:=true, driving_side:='b')
RETURNS SET OF (start_vid, end_vid, agg_cost)

170 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

Example

SELECT * FROM pgr_withPointsCost(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, ARRAY[-3,5]);

start_pid | end_pid | agg_cost
-----------+---------+----------

-1 | -3 | 3.2
-1 | 5 | 1.6

(2 rows)

Many to One
pgr_withPointsCost(edges_sql, points_sql, start_vids, end_vid,

directed:=true, driving_side:='b')
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example

SELECT * FROM pgr_withPointsCost(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
ARRAY[-1,2], -3);

start_pid | end_pid | agg_cost
-----------+---------+----------

-1 | -3 | 3.2
2 | -3 | 2.6

(2 rows)

Many to Many
pgr_withPointsCost(edges_sql, points_sql, start_vids, end_vids,

directed:=true, driving_side:='b')
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example

SELECT * FROM pgr_withPointsCost(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
ARRAY[-1,2], ARRAY[-3,7]);

start_pid | end_pid | agg_cost
-----------+---------+----------

-1 | -3 | 3.2
-1 | 7 | 3.6
2 | -3 | 2.6
2 | 7 | 3

(4 rows)

Description of the Signatures

Description of the edges_sql query

edges_sql an SQL query, which should return a set of rows with the following columns:

7.1. Stable proposed Functions 171

pgRouting Manual, Release 2.3.2 (master)

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end

point vertex of the edge.
target ANY-INTEGER Identifier of the second end

point vertex of the edge.
cost ANY-NUMERICAL

Weight of the edge (source, target)

• When neg-
ative: edge
(source, tar-
get) does not
exist, therefore
it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1
Weight of the edge (target, source),

• When nega-
tive: edge (tar-
get, source)
does not exist,
therefore it’s
not part of the
graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the Points SQL query

points_sql an SQL query, which should return a set of rows with the following columns:

172 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

Column Type Description
pid ANY-INTEGER

(optional) Identifier of the point.
• If column present, it can

not be NULL.
• If column not present, a

sequential identifier will
be given automatically.

edge_id ANY-INTEGER Identifier of the “closest” edge to the
point.

fraction ANY-NUMERICAL Value in <0,1> that indicates the
relative postition from the first end
point of the edge.

side CHAR
(optional) Value in [’b’, ‘r’, ‘l’, NULL] indicating if the point is:

• In the right, left of the
edge or

• If it doesn’t matter with
‘b’ or NULL.

• If column not present
‘b’ is considered.

Where:

ANY-INTEGER smallint, int, bigint

ANY-NUMERICAL smallint, int, bigint, real, float

Description of the parameters of the signatures

Parameter Type Description
edges_sql TEXT Edges SQL query as described

above.
points_sql TEXT Points SQL query as described

above.
start_vid ANY-INTEGER Starting vertex identifier. When

negative: is a point’s pid.
end_vid ANY-INTEGER Ending vertex identifier. When neg-

ative: is a point’s pid.
start_vids ARRAY[ANY-INTEGER] Array of identifiers of starting ver-

tices. When negative: is a point’s
pid.

end_vids ARRAY[ANY-INTEGER] Array of identifiers of ending ver-
tices. When negative: is a point’s
pid.

directed BOOLEAN (optional). When false the graph
is considered as Undirected. De-
fault is true which considers the
graph as Directed.

driving_side CHAR
(optional) Value in [’b’, ‘r’, ‘l’, NULL] indicating if the driving side is:

• In the right or left or
• If it doesn’t matter with

‘b’ or NULL.
• If column not present

‘b’ is considered.

7.1. Stable proposed Functions 173

pgRouting Manual, Release 2.3.2 (master)

Description of the return values Returns set of (start_vid, end_vid, agg_cost)

Column Type Description
start_vid BIGINT Identifier of the starting vertex. When negative: is a point’s pid.
end_vid BIGINT Identifier of the ending point. When negative: is a point’s pid.
agg_cost FLOAT Aggregate cost from start_vid to end_vid.

Examples

Example With right side driving topology.

SELECT * FROM pgr_withPointsCost(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
ARRAY[-1,2], ARRAY[-3,7],
driving_side := 'l');

start_pid | end_pid | agg_cost
-----------+---------+----------

-1 | -3 | 3.2
-1 | 7 | 3.6
2 | -3 | 2.6
2 | 7 | 3

(4 rows)

Example With left side driving topology.

SELECT * FROM pgr_withPointsCost(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
ARRAY[-1,2], ARRAY[-3,7],
driving_side := 'r');

start_pid | end_pid | agg_cost
-----------+---------+----------

-1 | -3 | 4
-1 | 7 | 4.4
2 | -3 | 2.6
2 | 7 | 3

(4 rows)

Example Does not matter driving side.

SELECT * FROM pgr_withPointsCost(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
ARRAY[-1,2], ARRAY[-3,7],
driving_side := 'b');

start_pid | end_pid | agg_cost
-----------+---------+----------

-1 | -3 | 3.2
-1 | 7 | 3.6
2 | -3 | 2.6
2 | 7 | 3

(4 rows)

The queries use the Sample Data network.

History

• Proposed in version 2.2

174 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

See Also

• withPoints - Family of functions

Indices and tables

• genindex

• search

pgr_withPointsCostMatrix - proposed

Name

pgr_withPointsCostMatrix - Calculates the shortest path and returns only the aggregate cost of the short-
est path(s) found, for the combination of points given.

Warning: These are proposed functions for next mayor release.
• They are not officially in the current release.
• They will likely officially be part of the next mayor release:

– The functions make use of ANY-INTEGER and ANY-NUMERICAL
– Name might not change. (But still can)
– Signature might not change. (But still can)
– Functionality might not change. (But still can)
– pgTap tests have being done. But might need more.
– Documentation might need refinement.

5

Fig. 7.5: Boost Graph Inside

Signature Summary

pgr_withPointsCostMatrix(edges_sql, points_sql, start_vids)
pgr_withPointsCostMatrix(edges_sql, points_sql, start_vids, directed, driving_side)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Note: There is no details flag, unlike the other members of the withPoints family of functions.

Signatures

Minimal Signature

The minimal signature:

• Is for a directed graph.

• The driving side is set as b both. So arriving/departing to/from the point(s) can be in any direction.

7.1. Stable proposed Functions 175

http://www.boost.org/libs/graph

pgRouting Manual, Release 2.3.2 (master)

pgr_withPointsCostMatrix(edges_sql, points_sql, start_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example

SELECT * FROM pgr_withPointsCostMatrix(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction from pointsOfInterest',
array[-1, 3, 6, -6]);

start_vid | end_vid | agg_cost
-----------+---------+----------

-6 | -1 | 1.3
-6 | 3 | 4.3
-6 | 6 | 1.3
-1 | -6 | 1.3
-1 | 3 | 5.6
-1 | 6 | 2.6
3 | -6 | 1.7
3 | -1 | 1.6
3 | 6 | 1
6 | -6 | 1.3
6 | -1 | 2.6
6 | 3 | 3

(12 rows)

Complete Signature
pgr_withPointsCostMatrix(edges_sql, points_sql, start_vids,

directed:=true, driving_side:='b')
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example returning a symmetrical cost matrix

• Using the default side value on the points_sql query

• Using an undirected graph

• Using the default driving_side value

SELECT * FROM pgr_withPointsCostMatrix(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction from pointsOfInterest',
array[-1, 3, 6, -6], directed := false);

start_vid | end_vid | agg_cost
-----------+---------+----------

-6 | -1 | 1.3
-6 | 3 | 1.7
-6 | 6 | 1.3
-1 | -6 | 1.3
-1 | 3 | 1.6
-1 | 6 | 2.6
3 | -6 | 1.7
3 | -1 | 1.6
3 | 6 | 1
6 | -6 | 1.3
6 | -1 | 2.6
6 | 3 | 1

(12 rows)

Description of the Signatures

176 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

Description of the edges_sql query

edges_sql an SQL query, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end

point vertex of the edge.
target ANY-INTEGER Identifier of the second end

point vertex of the edge.
cost ANY-NUMERICAL

Weight of the edge (source, target)

• When neg-
ative: edge
(source, tar-
get) does not
exist, therefore
it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1
Weight of the edge (target, source),

• When nega-
tive: edge (tar-
get, source)
does not exist,
therefore it’s
not part of the
graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the Points SQL query

points_sql an SQL query, which should return a set of rows with the following columns:

7.1. Stable proposed Functions 177

pgRouting Manual, Release 2.3.2 (master)

Column Type Description
pid ANY-INTEGER

(optional) Identifier of the point.
• If column present, it can

not be NULL.
• If column not present, a

sequential identifier will
be given automatically.

edge_id ANY-INTEGER Identifier of the “closest” edge to the
point.

fraction ANY-NUMERICAL Value in <0,1> that indicates the
relative postition from the first end
point of the edge.

side CHAR
(optional) Value in [’b’, ‘r’, ‘l’, NULL] indicating if the point is:

• In the right, left of the
edge or

• If it doesn’t matter with
‘b’ or NULL.

• If column not present
‘b’ is considered.

Where:

ANY-INTEGER smallint, int, bigint

ANY-NUMERICAL smallint, int, bigint, real, float

Description of the parameters of the signatures

Parameter Type Description
edges_sql TEXT Edges SQL query as described

above.
points_sql TEXT Points SQL query as described

above.
start_vids ARRAY[ANY-INTEGER] Array of identifiers of starting ver-

tices. When negative: is a point’s
pid.

directed BOOLEAN (optional). When false the graph
is considered as Undirected. De-
fault is true which considers the
graph as Directed.

driving_side CHAR
(optional) Value in [’b’, ‘r’, ‘l’, NULL] indicating if the driving side is:

• In the right or left or
• If it doesn’t matter with

‘b’ or NULL.
• If column not present

‘b’ is considered.

Description of the return values Returns set of (start_vid, end_vid, agg_cost)

Column Type Description
start_vid BIGINT Identifier of the starting vertex.
end_vid BIGINT Identifier of the ending vertex.
agg_cost FLOAT Aggregate cost of the shortest path from start_vid to end_vid.

178 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

Examples

Example Use with tsp

SELECT * FROM pgr_TSP(
$$
SELECT * FROM pgr_withPointsCostMatrix(

'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction from pointsOfInterest',
array[-1, 3, 6, -6], directed := false);

$$,
randomize := false

);
seq | node | cost | agg_cost

-----+------+------+----------
1 | -6 | 1.3 | 0
2 | -1 | 1.6 | 1.3
3 | 3 | 1 | 2.9
4 | 6 | 1.3 | 3.9
5 | -6 | 0 | 5.2

(5 rows)

See Also

• withPoints - Family of functions

• Cost Matrix

• Traveling Sales Person

• sampledata network.

Indices and tables

• genindex

• search

pgr_withPointsKSP - Proposed

Name

pgr_withPointsKSP - Find the K shortest paths using Yen’s algorithm.

Warning: These are proposed functions for next mayor release.
• They are not officially in the current release.
• They will likely officially be part of the next mayor release:

– The functions make use of ANY-INTEGER and ANY-NUMERICAL
– Name might not change. (But still can)
– Signature might not change. (But still can)
– Functionality might not change. (But still can)
– pgTap tests have being done. But might need more.
– Documentation might need refinement.

7.1. Stable proposed Functions 179

pgRouting Manual, Release 2.3.2 (master)

6

Fig. 7.6: Boost Graph Inside

Synopsis

Modifies the graph to include the points defined in the points_sql and using Yen algorithm, finds the K shortest
paths.

Signature Summary

pgr_withPointsKSP(edges_sql, points_sql, start_pid, end_pid, K)
pgr_withPointsKSP(edges_sql, points_sql, start_pid, end_pid, K, directed, heap_paths, driving_side, details)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)

Signatures

Minimal Usage

The minimal usage:

• Is for a directed graph.

• The driving side is set as b both. So arriving/departing to/from the point(s) can be in any direction.

• No details are given about distance of other points of the query.

• No heap paths are returned.

pgr_withPointsKSP(edges_sql, points_sql, start_pid, end_pid, K)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)

Example

SELECT * FROM pgr_withPointsKSP(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, -2, 2);

seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------

1 | 1 | 1 | -1 | 1 | 0.6 | 0
2 | 1 | 2 | 2 | 4 | 1 | 0.6
3 | 1 | 3 | 5 | 8 | 1 | 1.6
4 | 1 | 4 | 6 | 9 | 1 | 2.6
5 | 1 | 5 | 9 | 15 | 0.4 | 3.6
6 | 1 | 6 | -2 | -1 | 0 | 4
7 | 2 | 1 | -1 | 1 | 0.6 | 0
8 | 2 | 2 | 2 | 4 | 1 | 0.6
9 | 2 | 3 | 5 | 8 | 1 | 1.6
10 | 2 | 4 | 6 | 11 | 1 | 2.6
11 | 2 | 5 | 11 | 13 | 1 | 3.6
12 | 2 | 6 | 12 | 15 | 0.6 | 4.6
13 | 2 | 7 | -2 | -1 | 0 | 5.2

(13 rows)

180 Chapter 7. Available Functions but not official pgRouting functions

http://www.boost.org/libs/graph

pgRouting Manual, Release 2.3.2 (master)

Complete Signature Finds the K shortest paths depending on the optional parameters setup.

pgr_withPointsKSP(edges_sql, points_sql, start_pid, end_pid, K,
directed:=true, heap_paths:=false, driving_side:='b', details:=false)

RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)

Example With details.

SELECT * FROM pgr_withPointsKSP(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, 6, 2, details := true);

seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------

1 | 1 | 1 | -1 | 1 | 0.6 | 0
2 | 1 | 2 | 2 | 4 | 0.7 | 0.6
3 | 1 | 3 | -6 | 4 | 0.3 | 1.3
4 | 1 | 4 | 5 | 8 | 1 | 1.6
5 | 1 | 5 | 6 | -1 | 0 | 2.6
6 | 2 | 1 | -1 | 1 | 0.6 | 0
7 | 2 | 2 | 2 | 4 | 0.7 | 0.6
8 | 2 | 3 | -6 | 4 | 0.3 | 1.3
9 | 2 | 4 | 5 | 10 | 1 | 1.6
10 | 2 | 5 | 10 | 12 | 0.6 | 2.6
11 | 2 | 6 | -3 | 12 | 0.4 | 3.2
12 | 2 | 7 | 11 | 13 | 1 | 3.6
13 | 2 | 8 | 12 | 15 | 0.6 | 4.6
14 | 2 | 9 | -2 | 15 | 0.4 | 5.2
15 | 2 | 10 | 9 | 9 | 1 | 5.6
16 | 2 | 11 | 6 | -1 | 0 | 6.6

(16 rows)

Description of the Signatures

Description of the edges_sql query

edges_sql an SQL query, which should return a set of rows with the following columns:

7.1. Stable proposed Functions 181

pgRouting Manual, Release 2.3.2 (master)

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end

point vertex of the edge.
target ANY-INTEGER Identifier of the second end

point vertex of the edge.
cost ANY-NUMERICAL

Weight of the edge (source, target)

• When neg-
ative: edge
(source, tar-
get) does not
exist, therefore
it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1
Weight of the edge (target, source),

• When nega-
tive: edge (tar-
get, source)
does not exist,
therefore it’s
not part of the
graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the Points SQL query

points_sql an SQL query, which should return a set of rows with the following columns:

182 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

Column Type Description
pid ANY-INTEGER

(optional) Identifier of the point.
• If column present, it can

not be NULL.
• If column not present, a

sequential identifier will
be given automatically.

edge_id ANY-INTEGER Identifier of the “closest” edge to the
point.

fraction ANY-NUMERICAL Value in <0,1> that indicates the
relative postition from the first end
point of the edge.

side CHAR
(optional) Value in [’b’, ‘r’, ‘l’, NULL] indicating if the point is:

• In the right, left of the
edge or

• If it doesn’t matter with
‘b’ or NULL.

• If column not present
‘b’ is considered.

Where:

ANY-INTEGER smallint, int, bigint

ANY-NUMERICAL smallint, int, bigint, real, float

7.1. Stable proposed Functions 183

pgRouting Manual, Release 2.3.2 (master)

Description of the parameters of the signatures

Parameter Type Description
edges_sql TEXT Edges SQL query as described

above.
points_sql TEXT Points SQL query as described

above.
start_pid ANY-INTEGER Starting point id.
end_pid ANY-INTEGER Ending point id.
K INTEGER Number of shortest paths.
directed BOOLEAN (optional). When false the graph

is considered as Undirected. De-
fault is true which considers the
graph as Directed.

heap_paths BOOLEAN (optional). When true the paths
calculated to get the shortests paths
will be returned also. Default is
false only the K shortest paths are
returned.

driving_side CHAR
(optional) Value in [’b’, ‘r’, ‘l’, NULL] indicating if the driving side is:

• In the right or left or
• If it doesn’t matter with

‘b’ or NULL.
• If column not present

‘b’ is considered.

details BOOLEAN (optional). When true the results
will include the driving distance to
the points with in the distance.
Default is false which ignores
other points of the points_sql.

Description of the return values Returns set of (seq, path_id, path_seq, node, edge, cost,
agg_cost)

184 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

Column Type Description
seq INTEGER Row sequence.
path_seq INTEGER Relative position in the path of node

and edge. Has value 1 for the begin-
ning of a path.

path_id INTEGER Path identifier. The ordering of the
paths: For two paths i, j if i < j then
agg_cost(i) <= agg_cost(j).

node BIGINT Identifier of the node in the path.
Negative values are the identifiers of
a point.

edge BIGINT
Identifier of the edge used to go from node to the next node in the path sequence.

• -1 for the last row in the
path sequence.

cost FLOAT
Cost to traverse from node using edge to the next node in the path sequence.

• 0 for the last row in the
path sequence.

agg_cost FLOAT
Aggregate cost from start_pid to node.

• 0 for the first row in the
path sequence.

Examples

Example Left side driving topology with details.

SELECT * FROM pgr_withPointsKSP(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, -2, 2,
driving_side := 'l', details := true);

seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------

1 | 1 | 1 | -1 | 1 | 0.6 | 0
2 | 1 | 2 | 2 | 4 | 0.7 | 0.6
3 | 1 | 3 | -6 | 4 | 0.3 | 1.3
4 | 1 | 4 | 5 | 8 | 1 | 1.6
5 | 1 | 5 | 6 | 11 | 1 | 2.6
6 | 1 | 6 | 11 | 13 | 1 | 3.6
7 | 1 | 7 | 12 | 15 | 0.6 | 4.6
8 | 1 | 8 | -2 | -1 | 0 | 5.2
9 | 2 | 1 | -1 | 1 | 0.6 | 0
10 | 2 | 2 | 2 | 4 | 0.7 | 0.6
11 | 2 | 3 | -6 | 4 | 0.3 | 1.3
12 | 2 | 4 | 5 | 8 | 1 | 1.6
13 | 2 | 5 | 6 | 9 | 1 | 2.6
14 | 2 | 6 | 9 | 15 | 1 | 3.6
15 | 2 | 7 | 12 | 15 | 0.6 | 4.6
16 | 2 | 8 | -2 | -1 | 0 | 5.2

(16 rows)

Example Right side driving topology with heap paths and details.

7.1. Stable proposed Functions 185

pgRouting Manual, Release 2.3.2 (master)

SELECT * FROM pgr_withPointsKSP(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, -2, 2,
heap_paths := true, driving_side := 'r', details := true);

seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------

1 | 1 | 1 | -1 | 1 | 0.4 | 0
2 | 1 | 2 | 1 | 1 | 1 | 0.4
3 | 1 | 3 | 2 | 4 | 0.7 | 1.4
4 | 1 | 4 | -6 | 4 | 0.3 | 2.1
5 | 1 | 5 | 5 | 8 | 1 | 2.4
6 | 1 | 6 | 6 | 9 | 1 | 3.4
7 | 1 | 7 | 9 | 15 | 0.4 | 4.4
8 | 1 | 8 | -2 | -1 | 0 | 4.8
9 | 2 | 1 | -1 | 1 | 0.4 | 0
10 | 2 | 2 | 1 | 1 | 1 | 0.4
11 | 2 | 3 | 2 | 4 | 0.7 | 1.4
12 | 2 | 4 | -6 | 4 | 0.3 | 2.1
13 | 2 | 5 | 5 | 8 | 1 | 2.4
14 | 2 | 6 | 6 | 11 | 1 | 3.4
15 | 2 | 7 | 11 | 13 | 1 | 4.4
16 | 2 | 8 | 12 | 15 | 1 | 5.4
17 | 2 | 9 | 9 | 15 | 0.4 | 6.4
18 | 2 | 10 | -2 | -1 | 0 | 6.8
19 | 3 | 1 | -1 | 1 | 0.4 | 0
20 | 3 | 2 | 1 | 1 | 1 | 0.4
21 | 3 | 3 | 2 | 4 | 0.7 | 1.4
22 | 3 | 4 | -6 | 4 | 0.3 | 2.1
23 | 3 | 5 | 5 | 10 | 1 | 2.4
24 | 3 | 6 | 10 | 12 | 0.6 | 3.4
25 | 3 | 7 | -3 | 12 | 0.4 | 4
26 | 3 | 8 | 11 | 13 | 1 | 4.4
27 | 3 | 9 | 12 | 15 | 1 | 5.4
28 | 3 | 10 | 9 | 15 | 0.4 | 6.4
29 | 3 | 11 | -2 | -1 | 0 | 6.8

(29 rows)

The queries use the Sample Data network.

History

• Proposed in version 2.2

See Also

• withPoints - Family of functions

Indices and tables

• genindex

• search

186 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

pgr_withPointsDD - Proposed

Name

pgr_withPointsDD - Returns the driving distance from a starting point.

Warning: These are proposed functions for next mayor release.
• They are not officially in the current release.
• They will likely officially be part of the next mayor release:

– The functions make use of ANY-INTEGER and ANY-NUMERICAL
– Name might not change. (But still can)
– Signature might not change. (But still can)
– Functionality might not change. (But still can)
– pgTap tests have being done. But might need more.
– Documentation might need refinement.

7

Fig. 7.7: Boost Graph Inside

Synopsis

Modify the graph to include points and using Dijkstra algorithm, extracts all the nodes and points that have
costs less than or equal to the value distance from the starting point. The edges extracted will conform the
corresponding spanning tree.

Signature Summary

pgr_withPointsDD(edges_sql, points_sql, start_vid, distance)
pgr_withPointsDD(edges_sql, points_sql, start_vid, distance, directed, driving_side, details)
pgr_withPointsDD(edges_sql, points_sql, start_vids, distance, directed, driving_side, details, equicost)
RETURNS SET OF (seq, node, edge, cost, agg_cost)

Signatures

Minimal Use

The minimal signature:

• Is for a directed graph.

• The driving side is set as b both. So arriving/departing to/from the point(s) can be in any direction.

• No details are given about distance of other points of the query.

pgr_withPointsDD(edges_sql, points_sql, start_vid, distance)
directed:=true, driving_side:='b', details:=false)

RETURNS SET OF (seq, node, edge, cost, agg_cost)

Example

7.1. Stable proposed Functions 187

http://www.boost.org/libs/graph

pgRouting Manual, Release 2.3.2 (master)

SELECT * FROM pgr_withPointsDD(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, 3.8);

seq | node | edge | cost | agg_cost
-----+------+------+------+----------

1 | -1 | -1 | 0 | 0
2 | 1 | 1 | 0.4 | 0.4
3 | 2 | 1 | 0.6 | 0.6
4 | 5 | 4 | 0.3 | 1.6
5 | 6 | 8 | 1 | 2.6
6 | 8 | 7 | 1 | 2.6
7 | 10 | 10 | 1 | 2.6
8 | 7 | 6 | 0.3 | 3.6
9 | 9 | 9 | 1 | 3.6
10 | 11 | 11 | 1 | 3.6
11 | 13 | 14 | 1 | 3.6

(11 rows)

Driving distance from a single point Finds the driving distance depending on the optional parameters setup.

pgr_withPointsDD(edges_sql, points_sql, start_vids, distance,
directed:=true, driving_side:='b', details:=false)

RETURNS SET OF (seq, node, edge, cost, agg_cost)

Example Right side driving topology

SELECT * FROM pgr_withPointsDD(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, 3.8,
driving_side := 'r',
details := true);

seq | node | edge | cost | agg_cost
-----+------+------+------+----------

1 | -1 | -1 | 0 | 0
2 | 1 | 1 | 0.4 | 0.4
3 | 2 | 1 | 1 | 1.4
4 | -6 | 4 | 0.7 | 2.1
5 | 5 | 4 | 0.3 | 2.4
6 | 6 | 8 | 1 | 3.4
7 | 8 | 7 | 1 | 3.4
8 | 10 | 10 | 1 | 3.4

(8 rows)

Driving distance from many starting points Finds the driving distance depending on the optional parameters
setup.

pgr_withPointsDD(edges_sql, points_sql, start_vids, distance,
directed:=true, driving_side:='b', details:=false, equicost:=false)

RETURNS SET OF (seq, node, edge, cost, agg_cost)

Description of the Signatures

Description of the edges_sql query

edges_sql an SQL query, which should return a set of rows with the following columns:

188 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end

point vertex of the edge.
target ANY-INTEGER Identifier of the second end

point vertex of the edge.
cost ANY-NUMERICAL

Weight of the edge (source, target)

• When neg-
ative: edge
(source, tar-
get) does not
exist, therefore
it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1
Weight of the edge (target, source),

• When nega-
tive: edge (tar-
get, source)
does not exist,
therefore it’s
not part of the
graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the Points SQL query

points_sql an SQL query, which should return a set of rows with the following columns:

7.1. Stable proposed Functions 189

pgRouting Manual, Release 2.3.2 (master)

Column Type Description
pid ANY-INTEGER

(optional) Identifier of the point.
• If column present, it can

not be NULL.
• If column not present, a

sequential identifier will
be given automatically.

edge_id ANY-INTEGER Identifier of the “closest” edge to the
point.

fraction ANY-NUMERICAL Value in <0,1> that indicates the
relative postition from the first end
point of the edge.

side CHAR
(optional) Value in [’b’, ‘r’, ‘l’, NULL] indicating if the point is:

• In the right, left of the
edge or

• If it doesn’t matter with
‘b’ or NULL.

• If column not present
‘b’ is considered.

Where:

ANY-INTEGER smallint, int, bigint

ANY-NUMERICAL smallint, int, bigint, real, float

190 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

Description of the parameters of the signatures

Parameter Type Description
edges_sql TEXT Edges SQL query as described

above.
points_sql TEXT Points SQL query as described

above.
start_vid ANY-INTEGER Starting point id
distance ANY-NUMERICAL Distance from the start_pid
directed BOOLEAN (optional). When false the graph

is considered as Undirected. De-
fault is true which considers the
graph as Directed.

driving_side CHAR
(optional). Value in [’b’, ‘r’, ‘l’, NULL] indicating if the driving side is:

• In the right or left or
• If it doesn’t matter with

‘b’ or NULL.
• If column not present

‘b’ is considered.

details BOOLEAN (optional). When true the results
will include the driving distance to
the points with in the distance.
Default is false which ignores
other points of the points_sql.

equicost BOOLEAN (optional). When true the nodes
will only appear in the closest
start_v list. Default is falsewhich
resembles several calls using the
single starting point signatures. Tie
brakes are arbitrary.

Description of the return values Returns set of (seq, node, edge, cost, agg_cost)

Column Type Description
seq INT row sequence.
node BIGINT Identifier of the node within the

Distance from start_pid. If
details =: true a negative
value is the identifier of a point.

edge BIGINT
Identifier of the edge used to go from node to the next node in the path sequence.

• -1 when start_vid
= node.

cost FLOAT
Cost to traverse edge.

• 0 when start_vid =
node.

agg_cost FLOAT
Aggregate cost from start_vid to node.

• 0 when start_vid =
node.

7.1. Stable proposed Functions 191

pgRouting Manual, Release 2.3.2 (master)

Examples for queries marked as directed with cost and reverse_cost columns

The examples in this section use the following Graph 1: Directed, with cost and reverse cost

Example Left side driving topology

SELECT * FROM pgr_withPointsDD(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, 3.8,
driving_side := 'l',
details := true);

seq | node | edge | cost | agg_cost
-----+------+------+------+----------

1 | -1 | -1 | 0 | 0
2 | 2 | 1 | 0.6 | 0.6
3 | -6 | 4 | 0.7 | 1.3
4 | 5 | 4 | 0.3 | 1.6
5 | 1 | 1 | 1 | 1.6
6 | 6 | 8 | 1 | 2.6
7 | 8 | 7 | 1 | 2.6
8 | 10 | 10 | 1 | 2.6
9 | -3 | 12 | 0.6 | 3.2
10 | -4 | 6 | 0.7 | 3.3
11 | 7 | 6 | 0.3 | 3.6
12 | 9 | 9 | 1 | 3.6
13 | 11 | 11 | 1 | 3.6
14 | 13 | 14 | 1 | 3.6

(14 rows)

Example Does not matter driving side.

SELECT * FROM pgr_withPointsDD(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, 3.8,
driving_side := 'b',
details := true);

seq | node | edge | cost | agg_cost
-----+------+------+------+----------

1 | -1 | -1 | 0 | 0
2 | 1 | 1 | 0.4 | 0.4
3 | 2 | 1 | 0.6 | 0.6
4 | -6 | 4 | 0.7 | 1.3
5 | 5 | 4 | 0.3 | 1.6
6 | 6 | 8 | 1 | 2.6
7 | 8 | 7 | 1 | 2.6
8 | 10 | 10 | 1 | 2.6
9 | -3 | 12 | 0.6 | 3.2
10 | -4 | 6 | 0.7 | 3.3
11 | 7 | 6 | 0.3 | 3.6
12 | 9 | 9 | 1 | 3.6
13 | 11 | 11 | 1 | 3.6
14 | 13 | 14 | 1 | 3.6

(14 rows)

The queries use the Sample Data network.

History

• Proposed in version 2.2

192 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

See Also

• pgr_drivingDistance - Driving distance using dijkstra.

• pgr_alphaShape - Alpha shape computation.

• pgr_pointsAsPolygon - Polygon around set of points.

Indices and tables

• genindex

• search

Warning: These are proposed functions for next mayor release.
• They are not officially in the current release.
• They will likely officially be part of the next mayor release:

– The functions make use of ANY-INTEGER and ANY-NUMERICAL
– Name might not change. (But still can)
– Signature might not change. (But still can)
– Functionality might not change. (But still can)
– pgTap tests have being done. But might need more.
– Documentation might need refinement.

Images

The squared vertices are the temporary vertices, The temporary vertices are added acordng to the dirving side, The
following images visualy show the diferences on how depending on the driving side the data is interpreted.

Right driving side

7.1. Stable proposed Functions 193

pgRouting Manual, Release 2.3.2 (master)

Left driving side

doesn’t matter the driving side

Introduction

This famly of functions was thought for routing vehicles, but might as well work for some other application that
we can not think of.

The with points family of function give you the ability to route between arbitrary points located outside the original
graph.

When given a point identified with a pid that its being mapped to and edge with an identifier edge_id, with a
fraction along that edge (from the source to the target of the edge) and some additional information about which
side of the edge the point is on, then routing from arbitrary points more accurately reflect routing vehicles in road
networks,

I talk about a family of functios because it includes different functionalities.

194 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

• pgr_withPoints is pgr_dijkstra based

• pgr_withPointsCost is pgr_dijkstraCost based

• pgr_withPointsKSP is pgr_ksp based

• pgr_withPointsDD is pgr_drivingDistance based

In all this functions we have to take care of as many aspects as possible:

• Must work for routing:

– Cars (directed graph)

– Pedestrians (undirected graph)

• Arriving at the point:

– In either side of the street.

– Compulsory arrival on the side of the street where the point is located.

• Countries with:

– Right side driving

– Left side driving

• Some points are:

– Permanent, for example the set of points of clients stored in a table in the data base

– Temporal, for example points given through a web application

• The numbering of the points are handled with negative sign.

– Original point identifiers are to be positive.

– Transformation to negative is done internally.

– For results for involving vertices identifiers

* positive sign is a vertex of the original grpah

* negative sign is a point of the temporary points

The reason for doing this is to avoid confusion when there is a vertex with the same number as identifier as the
points identifier.

Graph & edges

• Let 𝐺𝑑(𝑉,𝐸) where 𝑉 is the set of vertices and 𝐸 is the set of edges be the original directed graph.

– An edge of the original edges_sql is (𝑖𝑑, 𝑠𝑜𝑢𝑟𝑐𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡, 𝑐𝑜𝑠𝑡, 𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑐𝑜𝑠𝑡) will generate internally

* (𝑖𝑑, 𝑠𝑜𝑢𝑟𝑐𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡, 𝑐𝑜𝑠𝑡)

* (𝑖𝑑, 𝑡𝑎𝑟𝑔𝑒𝑡, 𝑠𝑜𝑢𝑟𝑐𝑒, 𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑐𝑜𝑠𝑡)

Point Definition

• A point is defined by the quadruplet: (𝑝𝑖𝑑, 𝑒𝑖𝑑, 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛, 𝑠𝑖𝑑𝑒)

– ped is the point identifier

– eid is an edge id of the edges_sql

– fraction represents where the edge eid will be cut.

– side Indicates the side of the edge where the point is located.

7.1. Stable proposed Functions 195

pgRouting Manual, Release 2.3.2 (master)

Creating Temporary Vertices in the Graph

For edge (15, 9,12 10, 20), & lets insert point (2, 12, 0.3, r)

On a right hand side driving network

From first image above:

• We can arrive to the point only via vertex 9.

• It only afects the edge (15, 9,12, 10) so that edge is removed.

• Edge (15, 12,9, 20) is kept.

• Create new edges:

– (15, 9,-1, 3) edge from vertex 9 to point 1 has cost 3

– (15, -1,12, 7) edge from point 1 to vertex 12 has cost 7

On a left hand side driving network

From second image above:

• We can arrive to the point only via vertex 12.

• It only afects the edge (15, 12,9 20) so that edge is removed.

• Edge (15, 9,12, 10) is kept.

• Create new edges:

– (15, 12,-1, 14) edge from vertex 12 to point 1 has cost 14

– (15, -1,9, 6) edge from point 1 to vertex 9 has cost 6

Remember that fraction is from vertex 9 to vertex 12

When driving side does not matter

From third image above:

• We can arrive to the point either via vertex 12 or via vertex 9

• Edge (15, 12,9 20) is removed.

• Edge (15, 9,12, 10) is removed.

• Create new edges:

– (15, 12,-1, 14) edge from vertex 12 to point 1 has cost 14

– (15, -1,9, 6) edge from point 1 to vertex 9 has cost 6

– (15, 9,-1, 3) edge from vertex 9 to point 1 has cost 3

– (15, -1,12, 7) edge from point 1 to vertex 12 has cost 7

7.1.4 Cost Matrix

• pgr_dijkstraCostMatrix - proposed

• pgr_withPointsCostMatrix - proposed

196 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

Warning: These are proposed functions for next mayor release.
• They are not officially in the current release.
• They will likely officially be part of the next mayor release:

– The functions make use of ANY-INTEGER and ANY-NUMERICAL
– Name might not change. (But still can)
– Signature might not change. (But still can)
– Functionality might not change. (But still can)
– pgTap tests have being done. But might need more.
– Documentation might need refinement.

General Information

Sinopsis

Traveling Sales Person needs as input a symmetric cost matrix and no edge (u, v) must value ∞.

This collection of functions will return a cost matrix in form of a table.

Characteristics

The main Characteristics are:

• Can be used as input to pgr_TSP.

– directly when the resulting matrix is symmetric and there is no ∞ value.

– It will be the users responsibility to make the matrix symmetric.

* By using geometric or harmonic average of the non symmetric values.

* By using max or min the non symmetric values.

* By setting the upper triangle to be the mirror image of the lower triangle.

* By setting the lower triangle to be the mirror image of the upper triangle.

– It is also the users responsibility to fix an ∞ value.

• Each function works as part of the family it belongs to.

• It does not return a path.

• Returns the sum of the costs of the shortest path for pair combination of nodes in the graph.

• Process is done only on edges with positive costs.

• Values are returned when there is a path.

– The returned values are in the form of a set of (start_vid, end_vid, agg_cost).

– When the starting vertex and ending vertex are the same, there is no path.

* The agg_cost int the non included values (v, v) is 0.

– When the starting vertex and ending vertex are the different and there is no path.

* The agg_cost in the non included values (u, v) is ∞.

• Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid,
end_vid).

• Depending on the function and its parameters, the results can be symmetric.

– The agg_cost of (u, v) is the same as for (v, u).

• Any duplicated value in the start_vids are ignored.

7.1. Stable proposed Functions 197

pgRouting Manual, Release 2.3.2 (master)

• The returned values are ordered:

– start_vid ascending

– end_vid ascending

• Running time: approximately 𝑂(|𝑠𝑡𝑎𝑟𝑡_𝑣𝑖𝑑𝑠| * (𝑉 log 𝑉 + 𝐸))

See Also

• pgr_TSP

Indices and tables

• genindex

• search

7.2 Experimental and Proposed functions

Experimental and Proposed functions

Warning: These are proposed functions
• They are not officially of the current release.
• They likely will not be officially be part of the next release:

– The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
– Name might change.
– Signature might change.
– Functionality might change.
– pgTap tests might be missing.
– Might need c/c++ coding.
– May lack documentation.
– Documentation if any might need to be rewritten.
– Documentation examples might need to be automatically generated.
– Might need a lot of feedback from the comunity.
– Might depend on a proposed function of pgRouting
– Might depend on a deprecated function of pgRouting

7.2.1 Proposed functions

• Contraction - Reduce network size using contraction techniques

– pgr_contractGraph - Proposed - Reduce network size using contraction techniques

• Maximum Flow

– pgr_maxFlowPushRelabel Proposed - Maximum flow using push&relabel algorithm.

– pgr_maxFlowEdmondsKarp - Proposed - Maximum flow using Edmonds&Karp algorithm.

– pgr_maxFlowBoykovKolmogorov - Proposed - Maximum flow using Boykov&Kolmogorov algo-
rithm.

• Applications of Maximum Flow

– pgr_maximumCardinalityMatching - Proposed - Calculates a maximum cardinality matching.

– pgr_edgeDisjointPaths - Proposed - Calculates edge disjoint paths.

198 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

• convenience

– pgr_pointToEdgeNode - Proposed - convert a point geometry to a vertex_id based on closest edge.

– pgr_pointsToVids - Proposed - convert an array of point geometries into vertex ids.

• graph analysis

– pgr_labelGraph - Proposed - Analyze / label subgraphs within a network

• Vehicle Routing Problems

– pgr_gsoc_vrppdtw - Proposed - VRP Pickup & Delivery (Euclidean)

– pgr_vrpOneDepot - Proposed - VRP One Depot

Contraction

Warning: These are proposed functions
• They are not officially of the current release.
• They likely will not be officially be part of the next release:

– The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
– Name might change.
– Signature might change.
– Functionality might change.
– pgTap tests might be missing.
– Might need c/c++ coding.
– May lack documentation.
– Documentation if any might need to be rewritten.
– Documentation examples might need to be automatically generated.
– Might need a lot of feedback from the comunity.
– Might depend on a proposed function of pgRouting
– Might depend on a deprecated function of pgRouting

pgr_contractGraph - Proposed

Introduction

In big graphs, like the road graphs, or electric networks, graph contraction can be used to speed up some graph
algorithms. Contraction reduces the size of the graph by removing some of the vertices and edges and, for example,
might add edges that represent a sequence of original edges decreasing the total time and space used in graph
algorithms.

This implementation gives a flexible framework for adding contraction algorithms in the future, currently, it sup-
ports two algorithms:

1. Dead end contraction

2. Linear contraction

Allowing the user to:

• Forbid contraction on a set of nodes.

• Decide the order of the contraction algorithms and set the maximum number of times they are to be executed.

Note: UNDER DISCUSSION: Forbid contraction on a set of edges

Dead end contraction

In the algorithm, dead end contraction is represented by 1.

7.2. Experimental and Proposed functions 199

pgRouting Manual, Release 2.3.2 (master)

Dead end nodes The definition of a dead end node is different for a directed and an undirected graph.

In case of a undirected graph, a node is considered a dead end node if

• The number of adjacent vertices is 1.

In case of an directed graph, a node is considered a dead end node if

• There are no outgoing edges and has at least one incoming edge.

• There is one incoming and one outgoing edge with the same identifier.

Examples

• The green node B represents a dead end node

• The node A is the only node connecting to B.

• Node A is part of the rest of the graph and has an unlimited number of incoming and outgoing edges.

• Directed graph

Operation: Dead End Contraction The dead end contraction will stop until there are no more dead end nodes.
For example from the following graph:

• Node A is connected to the rest of the graph by an unlimited number of edges.

• Node B is connected to the rest of the graph with one incoming edge.

• Node B is the only node connecting to C.

• The green node C represents a Dead End node

After contracting C, node B is now a Dead End node and is contracted:

Node B gets contracted

Nodes B and C belong to node A.

Not Dead End nodes In this graph B is not a dead end node.

Linear contraction

In the algorithm, linear contraction is represented by 2.

Linear nodes A node is considered a linear node if satisfies the following:

• The number of adjacent vertices are 2.

• Should have at least one incoming edge and one outgoing edge.

Examples

• The green node B represents a linear node

• The nodes A and C are the only nodes connecting to B.

• Node A is part of the rest of the graph and has an unlimited number of incoming and outgoing edges.

• Node C is part of the rest of the graph and has an unlimited number of incoming and outgoing edges.

• Directed graph

200 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

Operation: Linear Contraction The linear contraction will stop until there are no more linear nodes. For
example from the following graph:

• Node A is connected to the rest of the graph by an unlimited number of edges.

• Node B is connected to the rest of the graph with one incoming edge and one outgoing edge.

• Node C is connected to the rest of the graph with one incoming edge and one outgoing edge.

• Node D is connected to the rest of the graph by an unlimited number of edges.

• The green nodes B and C represents Linear nodes.

After contracting B, a new edge gets inserted between A and C which is represented by red color.

Node C is linear node and gets contracted.

Nodes B and C belong to edge connecting A and D which is represented by red color.

Not Linear nodes In this graph B is not a linear node.

The cycle

Contracting a graph, can be done with more than one operation. The order of the operations affect the resulting
contracted graph, after applying one operation, the set of vertices that can be contracted by another operation
changes.

This implementation, cycles max_cycles times through operations_order .

<input>
do max_cycles times {

for (operation in operations_order)
{ do operation }

}
<output>

Contracting Sample Data

In this section, building and using a contracted graph will be shown by example.

• The Sample Data for an undirected graph is used

• a dead end operation first followed by a linear operation.

The original graph:

7.2. Experimental and Proposed functions 201

pgRouting Manual, Release 2.3.2 (master)

After doing a dead end contraction operation:

202 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

Doing a linear contraction operation to the graph above

7.2. Experimental and Proposed functions 203

pgRouting Manual, Release 2.3.2 (master)

There are five cases, in this documentation, which arise when calculating the shortest path between a given source
and target. In this examples, pgr_dijkstra is used.

• Case 1: Both source and target belong to the contracted graph.

• Case 2: Source belongs to a contracted graph, while target belongs to a edge subgraph.

• Case 3: Source belongs to a vertex subgraph, while target belongs to an edge subgraph.

• Case 4: Source belongs to a contracted graph, while target belongs to an vertex subgraph.

• Case 5: The path contains a new edge added by the contraction algorithm.

Construction of the graph in the database

Original Data

The following query shows the original data involved in the contraction operation.

SELECT id, source, target, cost, reverse_cost FROM edge_table;
id | source | target | cost | reverse_cost

----+--------+--------+------+--------------
1 | 1 | 2 | 1 | 1
2 | 2 | 3 | -1 | 1
3 | 3 | 4 | -1 | 1
4 | 2 | 5 | 1 | 1
5 | 3 | 6 | 1 | -1
6 | 7 | 8 | 1 | 1
7 | 8 | 5 | 1 | 1
8 | 5 | 6 | 1 | 1
9 | 6 | 9 | 1 | 1

204 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

10 | 5 | 10 | 1 | 1
11 | 6 | 11 | 1 | -1
12 | 10 | 11 | 1 | -1
13 | 11 | 12 | 1 | -1
14 | 10 | 13 | 1 | 1
15 | 9 | 12 | 1 | 1
16 | 4 | 9 | 1 | 1
17 | 14 | 15 | 1 | 1
18 | 16 | 17 | 1 | 1

(18 rows)

Contraction Results

SELECT * FROM pgr_contractGraph(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
array[1,2], directed:=true);

seq | type | id | contracted_vertices | source | target | cost
-----+------+----+---------------------+--------+--------+------

1 | v | 5 | {7,8} | -1 | -1 | -1
2 | v | 15 | {14} | -1 | -1 | -1
3 | v | 17 | {16} | -1 | -1 | -1
4 | e | -1 | {1,2} | 3 | 5 | 2
5 | e | -2 | {4} | 9 | 3 | 2
6 | e | -3 | {10,13} | 5 | 11 | 2
7 | e | -4 | {12} | 11 | 9 | 2

(7 rows)

The above results do not represent the contracted graph. They represent the changes done to the graph after
applying the contraction algorithm. We can see that vertices like 6 and 11 do not appear in the contraction results
because they were not affected by the contraction algorithm.

step 1

Adding extra columns to the edge_table and edge_table_vertices_pgr tables:

Column Description
contracted_-
vertices

The vertices set belonging to the vertex/edge

is_contracted On a vertex table: when true the vertex is contracted, so is not part of the contracted
graph.

is_contracted On an edge table: when true the edge was generated by the contraction algorithm.

Using the following queries:

ALTER TABLE edge_table ADD contracted_vertices BIGINT[];
ALTER TABLE
ALTER TABLE edge_table_vertices_pgr ADD contracted_vertices BIGINT[];
ALTER TABLE
ALTER TABLE edge_table ADD is_contracted BOOLEAN DEFAULT false;
ALTER TABLE
ALTER TABLE edge_table_vertices_pgr ADD is_contracted BOOLEAN DEFAULT false;
ALTER TABLE

step 2

For simplicity, in this documentation, store the results of the call to pgr_contractGraph in a temporary table

7.2. Experimental and Proposed functions 205

pgRouting Manual, Release 2.3.2 (master)

SELECT * INTO contraction_results
FROM pgr_contractGraph(

'SELECT id, source, target, cost, reverse_cost FROM edge_table',
array[1,2], directed:=true);

SELECT 7

step 3

Update the vertex and edge tables using the results of the call to pgr_contraction

• In edge_table_vertices_pgr.is_contracted indicate the vertices that are contracted.

UPDATE edge_table_vertices_pgr
SET is_contracted = true
WHERE id IN (SELECT unnest(contracted_vertices) FROM contraction_results);
UPDATE 10

• Add to edge_table_vertices_pgr.contracted_vertices the contracted vertices belonging to the vertices.

UPDATE edge_table_vertices_pgr
SET contracted_vertices = contraction_results.contracted_vertices
FROM contraction_results
WHERE type = 'v' AND edge_table_vertices_pgr.id = contraction_results.id;
UPDATE 3

• Insert the new edges generated by pgr_contractGraph.

INSERT INTO edge_table(source, target, cost, reverse_cost, contracted_vertices, is_contracted)
SELECT source, target, cost, -1, contracted_vertices, true
FROM contraction_results
WHERE type = 'e';
INSERT 0 4

step 3.1

Verify visually the updates.

• On the edge_table_vertices_pgr

SELECT id, contracted_vertices, is_contracted
FROM edge_table_vertices_pgr
ORDER BY id;
id | contracted_vertices | is_contracted

----+---------------------+---------------
1 | | t
2 | | t
3 | | f
4 | | t
5 | {7,8} | f
6 | | f
7 | | t
8 | | t
9 | | f

10 | | t
11 | | f
12 | | t
13 | | t
14 | | t
15 | {14} | f
16 | | t
17 | {16} | f

206 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

(17 rows)

• On the edge_table

SELECT id, source, target, cost, reverse_cost, contracted_vertices, is_contracted
FROM edge_table
ORDER BY id;
id | source | target | cost | reverse_cost | contracted_vertices | is_contracted

----+--------+--------+------+--------------+---------------------+---------------
1 | 1 | 2 | 1 | 1 | | f
2 | 2 | 3 | -1 | 1 | | f
3 | 3 | 4 | -1 | 1 | | f
4 | 2 | 5 | 1 | 1 | | f
5 | 3 | 6 | 1 | -1 | | f
6 | 7 | 8 | 1 | 1 | | f
7 | 8 | 5 | 1 | 1 | | f
8 | 5 | 6 | 1 | 1 | | f
9 | 6 | 9 | 1 | 1 | | f

10 | 5 | 10 | 1 | 1 | | f
11 | 6 | 11 | 1 | -1 | | f
12 | 10 | 11 | 1 | -1 | | f
13 | 11 | 12 | 1 | -1 | | f
14 | 10 | 13 | 1 | 1 | | f
15 | 9 | 12 | 1 | 1 | | f
16 | 4 | 9 | 1 | 1 | | f
17 | 14 | 15 | 1 | 1 | | f
18 | 16 | 17 | 1 | 1 | | f
19 | 3 | 5 | 2 | -1 | {1,2} | t
20 | 9 | 3 | 2 | -1 | {4} | t
21 | 5 | 11 | 2 | -1 | {10,13} | t
22 | 11 | 9 | 2 | -1 | {12} | t

(22 rows)

• vertices that belong to the contracted graph are the non contracted vertices

SELECT id FROM edge_table_vertices_pgr
WHERE is_contracted = false
ORDER BY id;
id

3
5
6
9

11
15
17

(7 rows)

case 1: Both source and target belong to the contracted graph.

Inspecting the contracted graph above, vertex 3 and vertex 11 are part of the contracted graph. In the following
query:

• vertices_in_graph hold the vertices that belong to the contracted graph.

• when selecting the edges, only edges that have the source and the target in that set are the edges belonging
to the contracted graph, that is done in the WHERE clause.

7.2. Experimental and Proposed functions 207

pgRouting Manual, Release 2.3.2 (master)

Visually, looking at the original graph, going from 3 to 11: 3 -> 6 -> 11, and in the contracted graph, it is also 3 ->
6 -> 11. The results, on the contracted graph match the results as if it was done on the original graph.

SELECT * FROM pgr_dijkstra(
$$
WITH
vertices_in_graph AS (

SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false)
SELECT id, source, target, cost, reverse_cost
FROM edge_table
WHERE source IN (SELECT * FROM vertices_in_graph)
AND target IN (SELECT * FROM vertices_in_graph)
$$,
3, 11, false);

seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------

1 | 1 | 3 | 5 | 1 | 0
2 | 2 | 6 | 11 | 1 | 1
3 | 3 | 11 | -1 | 0 | 2

(3 rows)

case 2: Source belongs to the contracted graph, while target belongs to a edge subgraph.

Inspecting the contracted graph above, vertex 3 is part of the contracted graph and vertex 1 belongs to the contracted subgraph of edge 19. In the following query:

• expand1 holds the contracted vertices of the edge where vertex 1 belongs. (belongs to edge 19).

• vertices_in_graph hold the vertices that belong to the contracted graph and also the contracted vertices
of edge 19.

• when selecting the edges, only edges that have the source and the target in that set are the edges
belonging to the contracted graph, that is done in the WHERE clause.

Visually, looking at the original graph, going from 3 to 1: 3 -> 2 -> 1, and in the contracted graph, it is also 3 -> 2
-> 1. The results, on the contracted graph match the results as if it was done on the original graph.

SELECT * FROM pgr_dijkstra(
$$
WITH
expand_edges AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_table),
expand1 AS (SELECT contracted_vertices FROM edge_table

WHERE id IN (SELECT id FROM expand_edges WHERE vertex = 1)),
vertices_in_graph AS (

SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false
UNION
SELECT unnest(contracted_vertices) FROM expand1)

SELECT id, source, target, cost, reverse_cost
FROM edge_table
WHERE source IN (SELECT * FROM vertices_in_graph)
AND target IN (SELECT * FROM vertices_in_graph)
$$,
3, 1, false);

seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------

1 | 1 | 3 | 2 | 1 | 0
2 | 2 | 2 | 1 | 1 | 1
3 | 3 | 1 | -1 | 0 | 2

(3 rows)

208 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

case 3: Source belongs to a vertex subgraph, while target belongs to an edge subgraph.

Inspecting the contracted graph above, vertex 7 belongs to the contracted subgraph of vertex 5 and vertex 13
belongs to the contracted subgraph of edge 21. In the following query:

• expand7 holds the contracted vertices of vertex where vertex 7 belongs. (belongs to vertex 5)

• expand13 holds the contracted vertices of edge where vertex 13 belongs. (belongs to edge 21)

• vertices_in_graph hold the vertices that belong to the contracted graph, contracted vertices of vertex 5 and
contracted vertices of edge 21.

• when selecting the edges, only edges that have the source and the target in that set are the edges belonging
to the contracted graph, that is done in the WHERE clause.

Visually, looking at the original graph, going from 7 to 13: 7 -> 8 -> 5 -> 10 -> 13, and in the contracted graph,
it is also 7 -> 8 -> 5 -> 10 -> 13. The results, on the contracted graph match the results as if it was done on the
original graph.

SELECT * FROM pgr_dijkstra(
$$
WITH

expand_vertices AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_table_vertices_pgr),
expand7 AS (SELECT contracted_vertices FROM edge_table_vertices_pgr

WHERE id IN (SELECT id FROM expand_vertices WHERE vertex = 7)),

expand_edges AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_table),
expand13 AS (SELECT contracted_vertices FROM edge_table

WHERE id IN (SELECT id FROM expand_edges WHERE vertex = 13)),

vertices_in_graph AS (
SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false
UNION
SELECT unnest(contracted_vertices) FROM expand13
UNION
SELECT unnest(contracted_vertices) FROM expand7)

SELECT id, source, target, cost, reverse_cost
FROM edge_table
WHERE source IN (SELECT * FROM vertices_in_graph)
AND target IN (SELECT * FROM vertices_in_graph)
$$,
7, 13, false);

seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------

1 | 1 | 7 | 6 | 1 | 0
2 | 2 | 8 | 7 | 1 | 1
3 | 3 | 5 | 10 | 1 | 2
4 | 4 | 10 | 14 | 1 | 3
5 | 5 | 13 | -1 | 0 | 4

(5 rows)

case 4: Source belongs to the contracted graph, while target belongs to an vertex subgraph.

Inspecting the contracted graph above, vertex 3 is part of the contracted graph and vertex 7 belongs to the con-
tracted subgraph of vertex 5. In the following query:

• expand7 holds the contracted vertices of vertex where vertex 7 belongs. (belongs to vertex 5)

• vertices_in_graph hold the vertices that belong to the contracted graph and the contracted vertices of vertex
5.

7.2. Experimental and Proposed functions 209

pgRouting Manual, Release 2.3.2 (master)

• when selecting the edges, only edges that have the source and the target in that set are the edges belonging
to the contracted graph, that is done in the WHERE clause.

Visually, looking at the original graph, going from 3 to 7: 3 -> 2 -> 5 -> 8 -> 7, but in the contracted graph, it is 3
-> 5 -> 8 -> 7. The results, on the contracted graph do not match the results as if it was done on the original graph.
This is because the path contains edge 19 which is added by the contraction algorithm.

SELECT * FROM pgr_dijkstra(
$$
WITH
expand_vertices AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_table_vertices_pgr),
expand7 AS (SELECT contracted_vertices FROM edge_table_vertices_pgr

WHERE id IN (SELECT id FROM expand_vertices WHERE vertex = 7)),
vertices_in_graph AS (

SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false
UNION
SELECT unnest(contracted_vertices) FROM expand7)

SELECT id, source, target, cost, reverse_cost
FROM edge_table
WHERE source IN (SELECT * FROM vertices_in_graph)
AND target IN (SELECT * FROM vertices_in_graph)
$$,
3, 7, false);

seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------

1 | 1 | 3 | 19 | 2 | 0
2 | 2 | 5 | 7 | 1 | 2
3 | 3 | 8 | 6 | 1 | 3
4 | 4 | 7 | -1 | 0 | 4

(4 rows)

case 5: The path contains an edge added by the contraction algorithm.

In the previous example we can see that the path from vertex 3 to vertex 7 contains an edge which is added by the
contraction algorithm.

WITH
first_dijkstra AS (

SELECT * FROM pgr_dijkstra(
$$
WITH
expand_vertices AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_table_vertices_pgr),
expand7 AS (SELECT contracted_vertices FROM edge_table_vertices_pgr

WHERE id IN (SELECT id FROM expand_vertices WHERE vertex = 7)),
vertices_in_graph AS (

SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false
UNION
SELECT unnest(contracted_vertices) FROM expand7)

SELECT id, source, target, cost, reverse_cost
FROM edge_table
WHERE source IN (SELECT * FROM vertices_in_graph)
AND target IN (SELECT * FROM vertices_in_graph)
$$,
3, 7, false))

SELECT edge, contracted_vertices
FROM first_dijkstra JOIN edge_table
ON (edge = id)
WHERE is_contracted = true;

edge | contracted_vertices
------+---------------------

19 | {1,2}

210 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

(1 row)

Inspecting the contracted graph above, edge 19 should be expanded. In the following query:

• first_dijkstra holds the results of the dijkstra query.

• edges_to_expand holds the edges added by the contraction algorithm and included in the path.

• vertices_in_graph hold the vertices that belong to the contracted graph, vertices of the contracted solution
and the contracted vertices of the edges added by the contraction algorithm and included in the contracted
solution.

• when selecting the edges, only edges that have the source and the target in that set are the edges belonging
to the contracted graph, that is done in the WHERE clause.

Visually, looking at the original graph, going from 3 to 7: 3 -> 2 -> 5 -> 8 -> 7, and in the contracted graph, it is
also 3 -> 2 -> 5 -> 8 -> 7. The results, on the contracted graph match the results as if it was done on the original
graph.

SELECT * FROM pgr_dijkstra($$
WITH
-- This returns the results from case 2
first_dijkstra AS (

SELECT * FROM pgr_dijkstra(
'
WITH
expand_vertices AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_table_vertices_pgr),
expand7 AS (SELECT contracted_vertices FROM edge_table_vertices_pgr

WHERE id IN (SELECT id FROM expand_vertices WHERE vertex = 7)),
vertices_in_graph AS (

SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false
UNION
SELECT unnest(contracted_vertices) FROM expand7)

SELECT id, source, target, cost, reverse_cost
FROM edge_table
WHERE source IN (SELECT * FROM vertices_in_graph)
AND target IN (SELECT * FROM vertices_in_graph)
',
3, 7, false)),

-- edges that need expansion and the vertices to be expanded.
edges_to_expand AS (

SELECT edge, contracted_vertices
FROM first_dijkstra JOIN edge_table
ON (edge = id)
WHERE is_contracted = true),

vertices_in_graph AS (
-- the nodes of the contracted solution
SELECT node FROM first_dijkstra
UNION
-- the nodes of the expanding sections
SELECT unnest(contracted_vertices) FROM edges_to_expand)

SELECT id, source, target, cost, reverse_cost
FROM edge_table
WHERE source IN (SELECT * FROM vertices_in_graph)
AND target IN (SELECT * FROM vertices_in_graph)
-- not including the expanded edges
AND id NOT IN (SELECT edge FROM edges_to_expand)
$$,
3, 7, false);

seq | path_seq | node | edge | cost | agg_cost

7.2. Experimental and Proposed functions 211

pgRouting Manual, Release 2.3.2 (master)

-----+----------+------+------+------+----------
1 | 1 | 3 | 2 | 1 | 0
2 | 2 | 2 | 4 | 1 | 1
3 | 3 | 5 | 7 | 1 | 2
4 | 4 | 8 | 6 | 1 | 3
5 | 5 | 7 | -1 | 0 | 4

(5 rows)

See Also

• http://www.cs.cmu.edu/afs/cs/academic/class/15210-f12/www/lectures/lecture16.pdf

• http://algo2.iti.kit.edu/documents/routeplanning/geisberger_dipl.pdf

• The queries use pgr_contractGraph - Proposed function and the Sample Data network.

Indices and tables

• genindex

• search

pgr_contractGraph - Proposed

pgr_contractGraph — Performs graph contraction and returns the contracted vertices and edges.

Warning: These are proposed functions
• They are not officially of the current release.
• They likely will not be officially be part of the next release:

– The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
– Name might change.
– Signature might change.
– Functionality might change.
– pgTap tests might be missing.
– Might need c/c++ coding.
– May lack documentation.
– Documentation if any might need to be rewritten.
– Documentation examples might need to be automatically generated.
– Might need a lot of feedback from the comunity.
– Might depend on a proposed function of pgRouting
– Might depend on a deprecated function of pgRouting

8

Fig. 7.8: Boost Graph Inside

Synopsis

Contraction reduces the size of the graph by removing some of the vertices and edges and, for example, might add
edges that represent a sequence of original edges decreasing the total time and space used in graph algorithms.

212 Chapter 7. Available Functions but not official pgRouting functions

http://www.cs.cmu.edu/afs/cs/academic/class/15210-f12/www/lectures/lecture16.pdf
http://algo2.iti.kit.edu/documents/routeplanning/geisberger_dipl.pdf
http://www.boost.org/libs/graph

pgRouting Manual, Release 2.3.2 (master)

Characteristics

The main Characteristics are:

• Process is done only on edges with positive costs.

• There are two types of contraction methods used namely,

– Dead End Contraction

– Linear Contraction

• The values returned include the added edges and contracted vertices.

• The returned values are ordered as follows:

– column id ascending when type = v

– column id descending when type = e

Signature Summary:

The pgr_contractGraph function has the following signatures:

pgr_contractGraph(edges_sql, contraction_order)
pgr_contractGraph(edges_sql, contraction_order, max_cycles, forbidden_vertices, directed)

RETURNS SETOF (seq, type, id, contracted_vertices, source, target, cost)

Signatures

Minimal signature
pgr_contractGraph(edges_sql, contraction_order)

Example Making a dead end contraction and a linear contraction.

SELECT * FROM pgr_contractGraph(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[1, 2]);

seq | type | id | contracted_vertices | source | target | cost
-----+------+----+---------------------+--------+--------+------

1 | v | 5 | {7,8} | -1 | -1 | -1
2 | v | 15 | {14} | -1 | -1 | -1
3 | v | 17 | {16} | -1 | -1 | -1
4 | e | -1 | {1,2} | 3 | 5 | 2
5 | e | -2 | {4} | 9 | 3 | 2
6 | e | -3 | {10,13} | 5 | 11 | 2
7 | e | -4 | {12} | 11 | 9 | 2

(7 rows)

Complete signature
pgr_contractGraph(edges_sql, contraction_order, max_cycles, forbidden_vertices, directed)

Example Making a dead end contraction and a linear contraction and vertex 2 is forbidden from
contraction

SELECT * FROM pgr_contractGraph(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

ARRAY[1, 2], forbidden_vertices:=ARRAY[2]);
seq | type | id | contracted_vertices | source | target | cost

-----+------+----+---------------------+--------+--------+------

7.2. Experimental and Proposed functions 213

pgRouting Manual, Release 2.3.2 (master)

1 | v | 2 | {1} | -1 | -1 | -1
2 | v | 5 | {7,8} | -1 | -1 | -1
3 | v | 15 | {14} | -1 | -1 | -1
4 | v | 17 | {16} | -1 | -1 | -1
5 | e | -1 | {4} | 9 | 3 | 2
6 | e | -2 | {10,13} | 5 | 11 | 2
7 | e | -3 | {12} | 11 | 9 | 2

(7 rows)

Description of the edges_sql query

edges_sql an SQL query, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end

point vertex of the edge.
target ANY-INTEGER Identifier of the second end

point vertex of the edge.
cost ANY-NUMERICAL

Weight of the edge (source, target)

• When neg-
ative: edge
(source, tar-
get) does not
exist, therefore
it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1
Weight of the edge (target, source),

• When nega-
tive: edge (tar-
get, source)
does not exist,
therefore it’s
not part of the
graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

214 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

Description of the parameters of the signatures

Column Type Description
edges_sql TEXT SQL query as described above.
contraction_order ARRAY[ANY-INTEGER]

Ordered contraction operations.
• 1 = Dead end contrac-

tion
• 2 = Linear contraction

forbidden_vertices ARRAY[ANY-INTEGER] (optional). Identifiers of vertices
forbidden from contraction. Default
is an empty array.

max_cycles INTEGER (optional). Number of times the
contraction operations on contrac-
tion_order will be performed. De-
fault is 1.

directed BOOLEAN
• When true the graph is con-

sidered as Directed.
• When false the graph is

considered as Undirected.

Description of the return values

RETURNS SETOF (seq, type, id, contracted_vertices, source, target, cost)

The function returns a single row. The columns of the row are:

7.2. Experimental and Proposed functions 215

pgRouting Manual, Release 2.3.2 (master)

Column Type Description
seq INTEGER Sequential value starting from 1.
type TEXT

Type of the id.
• ‘v’ when id is an identi-

fier of a vertex.
• ‘e’ when id is an identi-

fier of an edge.

id BIGINT
Identifier of:

• the vertex when type =
‘v’.

– The vertex belongs
to the edge_table
passed as a param-
eter.

• the edge when type =
‘e’.

– The id is a decreas-
ing sequence start-
ing from -1.

– Representing a
pseudo id as is not
incorporated into
the edge_table.

contracted_vertices ARRAY[BIGINT] Array of contracted vertex identi-
fiers.

source BIGINT Identifier of the source vertex of the
current edge id. Valid values when
type = ‘e’.

target BIGINT Identifier of the target vertex of the
current edge id. Valid values when
type = ‘e’.

cost FLOAT Weight of the edge (source, target).
Valid values when type = ‘e’.

Examples

Example Only dead end contraction

SELECT * FROM pgr_contractGraph(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

ARRAY[1]);
seq | type | id | contracted_vertices | source | target | cost

-----+------+----+---------------------+--------+--------+------
1 | v | 2 | {1} | -1 | -1 | -1
2 | v | 5 | {7,8} | -1 | -1 | -1
3 | v | 10 | {13} | -1 | -1 | -1
4 | v | 15 | {14} | -1 | -1 | -1
5 | v | 17 | {16} | -1 | -1 | -1

(5 rows)

Example Only linear contraction

SELECT * FROM pgr_contractGraph(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

ARRAY[2]);

216 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

seq | type | id | contracted_vertices | source | target | cost
-----+------+----+---------------------+--------+--------+------

1 | e | -1 | {4} | 9 | 3 | 2
2 | e | -2 | {8} | 5 | 7 | 2
3 | e | -3 | {8} | 7 | 5 | 2
4 | e | -4 | {12} | 11 | 9 | 2

(4 rows)

Indices and tables

• genindex

• search

Maximum Flow

• pgr_maxFlowPushRelabel Proposed - Push and relabel algorithm implementation for maximum flow.

• pgr_maxFlowEdmondsKarp - Proposed - Edmonds and Karp algorithm implementation for maximum flow.

• pgr_maxFlowBoykovKolmogorov - Proposed - Boykov and Kolmogorov algorithm implementation for
maximum flow.

The maximum flow through the graph is guaranteed to be the same with all implementations, but the actual flow
through each edge may vary.

Warning: These are proposed functions
• They are not officially of the current release.
• They likely will not be officially be part of the next release:

– The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
– Name might change.
– Signature might change.
– Functionality might change.
– pgTap tests might be missing.
– Might need c/c++ coding.
– May lack documentation.
– Documentation if any might need to be rewritten.
– Documentation examples might need to be automatically generated.
– Might need a lot of feedback from the comunity.
– Might depend on a proposed function of pgRouting
– Might depend on a deprecated function of pgRouting

pgr_maxFlowPushRelabel Proposed

Name pgr_maxFlowPushRelabel — Calculates the maximum flow in a directed graph given a source and
a destination.

7.2. Experimental and Proposed functions 217

pgRouting Manual, Release 2.3.2 (master)

Warning: These are proposed functions
• They are not officially of the current release.
• They likely will not be officially be part of the next release:

– The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
– Name might change.
– Signature might change.
– Functionality might change.
– pgTap tests might be missing.
– Might need c/c++ coding.
– May lack documentation.
– Documentation if any might need to be rewritten.
– Documentation examples might need to be automatically generated.
– Might need a lot of feedback from the comunity.
– Might depend on a proposed function of pgRouting
– Might depend on a deprecated function of pgRouting

9

Fig. 7.9: Boost Graph Inside

Synopsis Calculates the maximum flow in a directed graph from a source node to a sink node. Edges must be
weighted with non-negative capacities.

Characteristics:

The main characterics are:

• Calculates the flow/residual capacity for each edge. In the output, edges with zero flow are omitted.

• The maximum flow through the graph can be calculated by aggregation on source/sink.

• Returns nothing if source and sink are the same.

• Allows multiple sources and sinks.

• Running time: 𝑂(𝑉 3)

Signature Summary
pgr_maxFlowPushRelabel(edges_sql, source_vertex, sink_vertex)
pgr_maxFlowPushRelabel(edges_sql, source_vertices, sink_vertex)
pgr_maxFlowPushRelabel(edges_sql, source_vertex, sink_vertices)
pgr_maxFlowPushRelabel(edges_sql, source_vertices, sink_vertices)
RETURNS SET OF (id, edge_id, source, target, flow, residual_capacity)

OR EMPTY SET

Signatures

One to One Calculates the maximum flow from one source vertex to one sink vertex in a directed graph.

pgr_maxFlowPushRelabel(edges_sql, source_vertex, sink_vertex)
RETURNS SET OF (id, edge_id, source, target, flow, residual_capacity)

OR EMPTY SET

218 Chapter 7. Available Functions but not official pgRouting functions

http://www.boost.org/libs/graph/doc/push_relabel_max_flow.html

pgRouting Manual, Release 2.3.2 (master)

Example

SELECT * FROM pgr_maxFlowPushRelabel(
'SELECT id,

source,
target,
c1.capacity as capacity,
c2.capacity as reverse_capacity

FROM edge_table JOIN categories AS c1 USING(category_id), categories AS c2
WHERE edge_table.reverse_category_id = c2.category_id
ORDER BY id'
, 6, 11

);
seq | edge_id | source | target | flow | residual_capacity

-----+---------+--------+--------+------+-------------------
1 | 10 | 5 | 10 | 100 | 30
2 | 8 | 6 | 5 | 100 | 30
3 | 9 | 6 | 9 | 50 | 80
4 | 11 | 6 | 11 | 130 | 0
5 | 15 | 9 | 12 | 50 | 30
6 | 12 | 10 | 11 | 100 | 0
7 | 13 | 12 | 11 | 50 | 0

(7 rows)

One to Many Ccalculates the maximum flow from one source vertex to many sink vertices in a directed graph.

pgr_maxFlowPushRelabel(edges_sql, source_vertex, sink_vertices)
RETURNS SET OF (id, edge_id, source, target, flow, residual_capacity)

OR EMPTY SET

Example

SELECT * FROM pgr_maxFlowPushRelabel(
'SELECT id,

source,
target,
c1.capacity as capacity,
c2.capacity as reverse_capacity

FROM edge_table JOIN categories AS c1 USING(category_id), categories AS c2
WHERE edge_table.reverse_category_id = c2.category_id
ORDER BY id'
, 6, ARRAY[11, 1, 13]

);
seq | edge_id | source | target | flow | residual_capacity

-----+---------+--------+--------+------+-------------------
1 | 1 | 2 | 1 | 130 | 0
2 | 4 | 2 | 5 | 20 | 80
3 | 2 | 3 | 2 | 100 | 0
4 | 3 | 4 | 3 | 50 | 80
5 | 4 | 5 | 2 | 50 | 0
6 | 7 | 5 | 8 | 50 | 80
7 | 10 | 5 | 10 | 100 | 30
8 | 5 | 6 | 3 | 50 | 0
9 | 8 | 6 | 5 | 130 | 0
10 | 9 | 6 | 9 | 100 | 30
11 | 11 | 6 | 11 | 130 | 0
12 | 6 | 7 | 8 | 50 | 0
13 | 6 | 8 | 7 | 50 | 50
14 | 7 | 8 | 5 | 50 | 0
15 | 15 | 9 | 12 | 50 | 30
16 | 16 | 9 | 4 | 50 | 30
17 | 12 | 10 | 11 | 100 | 0

7.2. Experimental and Proposed functions 219

pgRouting Manual, Release 2.3.2 (master)

18 | 13 | 12 | 11 | 50 | 0
(18 rows)

Many to One Calculates the maximum flow from many source vertices to one sink vertex in a directed graph.

pgr_maxFlowPushRelabel(edges_sql, source_vertices, sink_vertex)
RETURNS SET OF (id, edge_id, source, target, flow, residual_capacity)

OR EMPTY SET

Example

SELECT * FROM pgr_maxFlowPushRelabel(
'SELECT id,

source,
target,
c1.capacity as capacity,
c2.capacity as reverse_capacity

FROM edge_table JOIN categories AS c1 USING(category_id), categories AS c2
WHERE edge_table.reverse_category_id = c2.category_id
ORDER BY id'
, ARRAY[6, 8, 12], 11

);
seq | edge_id | source | target | flow | residual_capacity

-----+---------+--------+--------+------+-------------------
1 | 10 | 5 | 10 | 100 | 30
2 | 8 | 6 | 5 | 100 | 30
3 | 11 | 6 | 11 | 130 | 0
4 | 12 | 10 | 11 | 100 | 0
5 | 13 | 12 | 11 | 50 | 0

(5 rows)

Many to Many Calculates the maximum flow from many sources to many sinks in a directed graph.

pgr_maxFlowPushRelabel(edges_sql, source_vertices, sink_vertices)
RETURNS SET OF (id, edge_id, source, target, flow, residual_capacity)

OR EMPTY SET

Example

SELECT * FROM pgr_maxFlowPushRelabel(
'SELECT id,

source,
target,
c1.capacity as capacity,
c2.capacity as reverse_capacity

FROM edge_table JOIN categories AS c1 USING(category_id), categories AS c2
WHERE edge_table.reverse_category_id = c2.category_id
ORDER BY id'
, ARRAY[6, 8, 12], ARRAY[1, 3, 11]

);
seq | edge_id | source | target | flow | residual_capacity

-----+---------+--------+--------+------+-------------------
1 | 1 | 2 | 1 | 50 | 80
2 | 3 | 4 | 3 | 80 | 50
3 | 4 | 5 | 2 | 50 | 0
4 | 10 | 5 | 10 | 100 | 30
5 | 5 | 6 | 3 | 50 | 0
6 | 8 | 6 | 5 | 130 | 0
7 | 9 | 6 | 9 | 30 | 100
8 | 11 | 6 | 11 | 130 | 0

220 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

9 | 7 | 8 | 5 | 20 | 30
10 | 16 | 9 | 4 | 80 | 0
11 | 12 | 10 | 11 | 100 | 0
12 | 13 | 12 | 11 | 50 | 0
13 | 15 | 12 | 9 | 50 | 0

(13 rows)

Description of the Signatures

Description of the SQL query

edges_sql an SQL query, which should return a set of rows with the following columns:

Column Type Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
capacity ANY-INTEGER Capacity of the edge (source, target). Must be positive.
reverse_-
capacity

ANY-INTEGER (optional) Weight of the edge (target, source). Must be positive or
null.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

Description of the parameters of the signatures

Column Type Description
edges_sql TEXT SQL query as described above.
source_vertex BIGINT Identifier of the source vertex(or vertices).
sink_vertex BIGINT Identifier of the sink vertex(or vertices).

Description of the Return Values

Column Type Description
seq INT Sequential value starting from 1.
edge_id BIGINT Identifier of the edge in the original query(edges_sql).
source BIGINT Identifier of the first end point vertex of the edge.
target BIGINT Identifier of the second end point vertex of the edge.
flow BIGINT Flow through the edge in the direction (source, target).
residual_capacity BIGINT Residual capacity of the edge in the direction (source, target).

See Also

• Maximum Flow

• http://www.boost.org/libs/graph/doc/push_relabel_max_flow.html

• https://en.wikipedia.org/wiki/Push%E2%80%93relabel_maximum_flow_algorithm

Indices and tables

• genindex

• search

7.2. Experimental and Proposed functions 221

http://www.boost.org/libs/graph/doc/push_relabel_max_flow.html
https://en.wikipedia.org/wiki/Push%E2%80%93relabel_maximum_flow_algorithm

pgRouting Manual, Release 2.3.2 (master)

pgr_maxFlowEdmondsKarp - Proposed

Name pgr_maxFlowEdmondsKarp — Calculates the maximum flow in a directed graph given a source and
a destination. Implemented by Boost Graph Library.

Warning: These are proposed functions
• They are not officially of the current release.
• They likely will not be officially be part of the next release:

– The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
– Name might change.
– Signature might change.
– Functionality might change.
– pgTap tests might be missing.
– Might need c/c++ coding.
– May lack documentation.
– Documentation if any might need to be rewritten.
– Documentation examples might need to be automatically generated.
– Might need a lot of feedback from the comunity.
– Might depend on a proposed function of pgRouting
– Might depend on a deprecated function of pgRouting

10

Fig. 7.10: Boost Graph Inside

Synopsis Calculates the maximum flow in a directed graph from a source node to a sink node. Edges must be
weighted with non-negative capacities. Developed by Edmonds and Karp.

Characteristics:

The main characterics are:

• The graph must be directed.

• Calculates the flow/residual capacity for each edge. In the output, edges with zero flow are omitted.

• The maximum flow through the graph can be calculated by aggregation on source/sink.

• Returns nothing if source and sink are the same.

• Allows multiple sources and sinks (See signatures below).

• Running time: 𝑂(𝑉 * 𝐸2).

Signature Summary
pgr_maxFlowEdmondsKarp(edges_sql, source_vertex, sink_vertex)
pgr_maxFlowEdmondsKarp(edges_sql, source_vertices, sink_vertex)
pgr_maxFlowEdmondsKarp(edges_sql, source_vertex, sink_vertices)
pgr_maxFlowEdmondsKarp(edges_sql, source_vertices, sink_vertices)
RETURNS SET OF (id, edge_id, source, target, flow, residual_capacity)

OR EMPTY SET

Signatures

222 Chapter 7. Available Functions but not official pgRouting functions

http://www.boost.org/libs/graph/doc/edmonds_karp_max_flow.html

pgRouting Manual, Release 2.3.2 (master)

One to One Calculates the maximum flow from one source vertex to one sink vertex on a directed graph.

pgr_maxFlowEdmondsKarp(edges_sql, source_vertex, sink_vertex)
RETURNS SET OF (id, edge_id, source, target, flow, residual_capacity)

OR EMPTY SET

Example

SELECT * FROM pgr_maxFlowEdmondsKarp(
'SELECT id,

source,
target,
c1.capacity as capacity,
c2.capacity as reverse_capacity

FROM edge_table JOIN categories AS c1 USING(category_id), categories AS c2
WHERE edge_table.reverse_category_id = c2.category_id
ORDER BY id'
, 6, 11

);
seq | edge_id | source | target | flow | residual_capacity

-----+---------+--------+--------+------+-------------------
1 | 10 | 5 | 10 | 100 | 30
2 | 8 | 6 | 5 | 100 | 30
3 | 9 | 6 | 9 | 50 | 80
4 | 11 | 6 | 11 | 130 | 0
5 | 15 | 9 | 12 | 50 | 30
6 | 12 | 10 | 11 | 100 | 0
7 | 13 | 12 | 11 | 50 | 0

(7 rows)

One to Many Calculates the maximum flow from one source vertex to many sink vertices on a directed graph.

pgr_maxFlowEdmondsKarp(edges_sql, source_vertex, sink_vertices)
RETURNS SET OF (id, edge_id, source, target, flow, residual_capacity)

OR EMPTY SET

Example

SELECT * FROM pgr_maxFlowEdmondsKarp(
'SELECT id,

source,
target,
c1.capacity as capacity,
c2.capacity as reverse_capacity

FROM edge_table JOIN categories AS c1 USING(category_id), categories AS c2
WHERE edge_table.reverse_category_id = c2.category_id
ORDER BY id'

, 6, ARRAY[1, 3, 11]
);
seq | edge_id | source | target | flow | residual_capacity

-----+---------+--------+--------+------+-------------------
1 | 1 | 2 | 1 | 50 | 80
2 | 3 | 4 | 3 | 80 | 50
3 | 4 | 5 | 2 | 50 | 0
4 | 10 | 5 | 10 | 80 | 50
5 | 5 | 6 | 3 | 50 | 0
6 | 8 | 6 | 5 | 130 | 0
7 | 9 | 6 | 9 | 130 | 0
8 | 11 | 6 | 11 | 130 | 0
9 | 15 | 9 | 12 | 50 | 30
10 | 16 | 9 | 4 | 80 | 0
11 | 12 | 10 | 11 | 80 | 20

7.2. Experimental and Proposed functions 223

pgRouting Manual, Release 2.3.2 (master)

12 | 13 | 12 | 11 | 50 | 0
(12 rows)

Many to One Calculates the maximum flow from many source vertices to one sink vertex on a directed graph.

pgr_maxFlowEdmondsKarp(edges_sql, source_vertices, sink_vertex)
RETURNS SET OF (id, edge_id, source, target, flow, residual_capacity)

OR EMPTY SET

Example

SELECT * FROM pgr_maxFlowEdmondsKarp(
'SELECT id,

source,
target,
c1.capacity as capacity,
c2.capacity as reverse_capacity

FROM edge_table JOIN categories AS c1 USING(category_id), categories AS c2
WHERE edge_table.reverse_category_id = c2.category_id
ORDER BY id'

, ARRAY[6, 8, 12], 11
);
seq | edge_id | source | target | flow | residual_capacity

-----+---------+--------+--------+------+-------------------
1 | 10 | 5 | 10 | 100 | 30
2 | 8 | 6 | 5 | 100 | 30
3 | 11 | 6 | 11 | 130 | 0
4 | 12 | 10 | 11 | 100 | 0
5 | 13 | 12 | 11 | 50 | 0

(5 rows)

Many to Many Calculates the maximum flow from many sources to many sinks on a directed graph.

pgr_maxFlowEdmondsKarp(edges_sql, source_vertices, sink_vertices)
RETURNS SET OF (id, edge_id, source, target, flow, residual_capacity)

OR EMPTY SET

Example

SELECT * FROM pgr_maxFlowEdmondsKarp(
'SELECT id,

source,
target,
c1.capacity as capacity,
c2.capacity as reverse_capacity

FROM edge_table JOIN categories AS c1 USING(category_id), categories AS c2
WHERE edge_table.reverse_category_id = c2.category_id
ORDER BY id'

, ARRAY[6, 8, 12], ARRAY[1, 3, 11]
);
seq | edge_id | source | target | flow | residual_capacity

-----+---------+--------+--------+------+-------------------
1 | 1 | 2 | 1 | 50 | 80
2 | 3 | 4 | 3 | 80 | 50
3 | 4 | 5 | 2 | 50 | 0
4 | 10 | 5 | 10 | 100 | 30
5 | 5 | 6 | 3 | 50 | 0
6 | 8 | 6 | 5 | 130 | 0
7 | 9 | 6 | 9 | 80 | 50
8 | 11 | 6 | 11 | 130 | 0

224 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

9 | 7 | 8 | 5 | 20 | 30
10 | 16 | 9 | 4 | 80 | 0
11 | 12 | 10 | 11 | 100 | 0
12 | 13 | 12 | 11 | 50 | 0

(12 rows)

Description of the Signatures

Description of the SQL query

edges_sql an SQL query, which should return a set of rows with the following columns:

Column Type Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
capacity ANY-INTEGER Capacity of the edge (source, target). Must be positive.
reverse_-
capacity

ANY-INTEGER (optional) Weight of the edge (target, source). Must be positive or
null.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

Description of the parameters of the signatures

Column Type Description
edges_sql TEXT SQL query as described above.
source_vertex BIGINT Identifier of the source vertex(or vertices).
sink_vertex BIGINT Identifier of the sink vertex(or vertices).

Description of the return values

Column Type Description
seq INT Sequential value starting from 1.
edge_id BIGINT Identifier of the edge in the original query(edges_sql).
source BIGINT Identifier of the first end point vertex of the edge.
target BIGINT Identifier of the second end point vertex of the edge.
flow BIGINT Flow through the edge in the direction (source, target).
residual_capacity BIGINT Residual capacity of the edge in the direction (source, target).

See Also

• Maximum Flow

• http://www.boost.org/libs/graph/doc/edmonds_karp_max_flow.html

• https://en.wikipedia.org/wiki/Edmonds%E2%80%93Karp_algorithm

Indices and tables

• genindex

• search

7.2. Experimental and Proposed functions 225

http://www.boost.org/libs/graph/doc/edmonds_karp_max_flow.html
https://en.wikipedia.org/wiki/Edmonds%E2%80%93Karp_algorithm

pgRouting Manual, Release 2.3.2 (master)

pgr_maxFlowBoykovKolmogorov - Proposed

Name pgr_maxFlowBoykovKolmogorov — Calculates the maximum flow in a directed graph given a
source and a destination. Implemented by Boost Graph Library.

Warning: These are proposed functions
• They are not officially of the current release.
• They likely will not be officially be part of the next release:

– The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
– Name might change.
– Signature might change.
– Functionality might change.
– pgTap tests might be missing.
– Might need c/c++ coding.
– May lack documentation.
– Documentation if any might need to be rewritten.
– Documentation examples might need to be automatically generated.
– Might need a lot of feedback from the comunity.
– Might depend on a proposed function of pgRouting
– Might depend on a deprecated function of pgRouting

11

Fig. 7.11: Boost Graph Inside

Synopsis Calculates the maximum flow in a directed graph from a source node to a sink node. Edges must be
weighted with non-negative capacities. Developed by Boykov and Kolmogorov.

Characteristics:

The main characterics are:

• The graph must be directed.

• Calculates the flow/residual capacity for each edge. In the output, edges with zero flow are omitted.

• The maximum flow through the graph can be calculated by aggregation on source/sink.

• Returns nothing if source and sink are the same.

• Allows multiple sources and sinks (See signatures below).

• Running time: in general polynomial complexity, performs well on graphs that represent 2D grids
(eg.: roads).

Signature Summary
pgr_maxFlowBoykovKolmogorov(edges_sql, source_vertex, sink_vertex)
pgr_maxFlowBoykovKolmogorov(edges_sql, source_vertices, sink_vertex)
pgr_maxFlowBoykovKolmogorov(edges_sql, source_vertex, sink_vertices)
pgr_maxFlowBoykovKolmogorov(edges_sql, source_vertices, sink_vertices)
RETURNS SET OF (id, edge_id, source, target, flow, residual_capacity)

OR EMPTY SET

Signatures

226 Chapter 7. Available Functions but not official pgRouting functions

http://www.boost.org/libs/graph/doc/boykov_kolmogorov_max_flow.html

pgRouting Manual, Release 2.3.2 (master)

One to One The available signature calculates the maximum flow from one source vertex to one sink vertex.

pgr_maxFlowBoykovKolmogorov(edges_sql, source_vertex, sink_vertex)
RETURNS SET OF (id, edge_id, source, target, flow, residual_capacity)

OR EMPTY SET

Example

SELECT * FROM pgr_maxFlowBoykovKolmogorov(
'SELECT id,

source,
target,
c1.capacity as capacity,
c2.capacity as reverse_capacity

FROM edge_table JOIN categories AS c1 USING(category_id), categories AS c2
WHERE edge_table.reverse_category_id = c2.category_id
ORDER BY id'
, 6, 11

);
seq | edge_id | source | target | flow | residual_capacity

-----+---------+--------+--------+------+-------------------
1 | 10 | 5 | 10 | 100 | 30
2 | 8 | 6 | 5 | 100 | 30
3 | 9 | 6 | 9 | 50 | 80
4 | 11 | 6 | 11 | 130 | 0
5 | 15 | 9 | 12 | 50 | 30
6 | 12 | 10 | 11 | 100 | 0
7 | 13 | 12 | 11 | 50 | 0

(7 rows)

One to Many The available signature calculates the maximum flow from one source vertex to many sink ver-
tices.

pgr_maxFlowBoykovKolmogorov(edges_sql, source_vertex, sink_vertices)
RETURNS SET OF (id, edge_id, source, target, flow, residual_capacity)

OR EMPTY SET

Example

SELECT * FROM pgr_maxFlowBoykovKolmogorov(
'SELECT id,

source,
target,
c1.capacity as capacity,
c2.capacity as reverse_capacity

FROM edge_table JOIN categories AS c1 USING(category_id), categories AS c2
WHERE edge_table.reverse_category_id = c2.category_id
ORDER BY id'
, 6, ARRAY[1, 3, 11]

);
seq | edge_id | source | target | flow | residual_capacity

-----+---------+--------+--------+------+-------------------
1 | 1 | 2 | 1 | 50 | 80
2 | 3 | 4 | 3 | 80 | 50
3 | 4 | 5 | 2 | 50 | 0
4 | 10 | 5 | 10 | 80 | 50
5 | 5 | 6 | 3 | 50 | 0
6 | 8 | 6 | 5 | 130 | 0
7 | 9 | 6 | 9 | 130 | 0
8 | 11 | 6 | 11 | 130 | 0
9 | 15 | 9 | 12 | 50 | 30
10 | 16 | 9 | 4 | 80 | 0

7.2. Experimental and Proposed functions 227

pgRouting Manual, Release 2.3.2 (master)

11 | 12 | 10 | 11 | 80 | 20
12 | 13 | 12 | 11 | 50 | 0

(12 rows)

Many to One The available signature calculates the maximum flow from many source vertices to one sink
vertex.

pgr_maxFlowBoykovKolmogorov(edges_sql, source_vertices, sink_vertex)
RETURNS SET OF (id, edge_id, source, target, flow, residual_capacity)

OR EMPTY SET

Example

SELECT * FROM pgr_maxFlowBoykovKolmogorov(
'SELECT id,

source,
target,
c1.capacity as capacity,
c2.capacity as reverse_capacity

FROM edge_table JOIN categories AS c1 USING(category_id), categories AS c2
WHERE edge_table.reverse_category_id = c2.category_id
ORDER BY id'
, ARRAY[6, 8, 12], 11

);
seq | edge_id | source | target | flow | residual_capacity

-----+---------+--------+--------+------+-------------------
1 | 10 | 5 | 10 | 100 | 30
2 | 8 | 6 | 5 | 100 | 30
3 | 11 | 6 | 11 | 130 | 0
4 | 12 | 10 | 11 | 100 | 0
5 | 13 | 12 | 11 | 50 | 0

(5 rows)

Many to Many The available signature calculates the maximum flow from many sources to many sinks.

pgr_maxFlowBoykovKolmogorov(edges_sql, source_vertices, sink_vertices)
RETURNS SET OF (id, edge_id, source, target, flow, residual_capacity)

OR EMPTY SET

Example

SELECT * FROM pgr_maxFlowBoykovKolmogorov(
'SELECT id,

source,
target,
c1.capacity as capacity,
c2.capacity as reverse_capacity

FROM edge_table JOIN categories AS c1 USING(category_id), categories AS c2
WHERE edge_table.reverse_category_id = c2.category_id
ORDER BY id'
, ARRAY[6, 8, 12], ARRAY[1, 3, 11]

);
seq | edge_id | source | target | flow | residual_capacity

-----+---------+--------+--------+------+-------------------
1 | 1 | 2 | 1 | 50 | 80
2 | 3 | 4 | 3 | 80 | 50
3 | 4 | 5 | 2 | 50 | 0
4 | 10 | 5 | 10 | 100 | 30
5 | 5 | 6 | 3 | 50 | 0
6 | 8 | 6 | 5 | 130 | 0

228 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

7 | 9 | 6 | 9 | 80 | 50
8 | 11 | 6 | 11 | 130 | 0
9 | 7 | 8 | 5 | 20 | 30
10 | 16 | 9 | 4 | 80 | 0
11 | 12 | 10 | 11 | 100 | 0
12 | 13 | 12 | 11 | 50 | 0

(12 rows)

Description of the Signatures

Description of the SQL query

edges_sql an SQL query, which should return a set of rows with the following columns:

Column Type Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
capacity ANY-INTEGER Capacity of the edge (source, target). Must be positive.
reverse_-
capacity

ANY-INTEGER (optional) Weight of the edge (target, source). Must be positive or
null.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

Description of the parameters of the signatures

Column Type Description
edges_sql TEXT SQL query as described above.
source_vertex BIGINT Identifier of the source vertex(or vertices).
sink_vertex BIGINT Identifier of the sink vertex(or vertices).

Description of the Return Values

Column Type Description
seq INT Sequential value starting from 1.
edge_id BIGINT Identifier of the edge in the original query(edges_sql).
source BIGINT Identifier of the first end point vertex of the edge.
target BIGINT Identifier of the second end point vertex of the edge.
flow BIGINT Flow through the edge in the direction (source, target).
residual_capacity BIGINT Residual capacity of the edge in the direction (source, target).

See Also

• http://www.boost.org/libs/graph/doc/boykov_kolmogorov_max_flow.html

• http://www.csd.uwo.ca/~yuri/Papers/pami04.pdf

Indices and tables

• genindex

• search

7.2. Experimental and Proposed functions 229

http://www.boost.org/libs/graph/doc/boykov_kolmogorov_max_flow.html
http://www.csd.uwo.ca/~yuri/Papers/pami04.pdf

pgRouting Manual, Release 2.3.2 (master)

Problem definition

A flow network is a directed graph where each edge has a capacity and a flow. The flow through an edge must not
exceed the capacity of the edge. Additionally, the incoming and outgoing flow of a node must be equal except the
for source which only has outgoing flow, and the destination(sink) which only has incoming flow.

Maximum flow algorithms calculate the maximum flow through the graph and the flow of each edge.

Given the following query:

pgr_maxFlow (𝑒𝑑𝑔𝑒𝑠_𝑠𝑞𝑙, 𝑠𝑜𝑢𝑟𝑐𝑒_𝑣𝑒𝑟𝑡𝑒𝑥, 𝑠𝑖𝑛𝑘_𝑣𝑒𝑟𝑡𝑒𝑥)

where 𝑒𝑑𝑔𝑒𝑠_𝑠𝑞𝑙 = {(𝑖𝑑𝑖, 𝑠𝑜𝑢𝑟𝑐𝑒𝑖, 𝑡𝑎𝑟𝑔𝑒𝑡𝑖, 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖, 𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖)}

Graph definition

The weighted directed graph, 𝐺(𝑉,𝐸), is defined as:

• the set of vertices 𝑉

– 𝑠𝑜𝑢𝑟𝑐𝑒_𝑣𝑒𝑟𝑡𝑒𝑥 ∪ 𝑠𝑖𝑛𝑘_𝑣𝑒𝑟𝑡𝑒𝑥
⋃︀

𝑠𝑜𝑢𝑟𝑐𝑒𝑖
⋃︀

𝑡𝑎𝑟𝑔𝑒𝑡𝑖

• the set of edges 𝐸

– 𝐸 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(𝑠𝑜𝑢𝑟𝑐𝑒𝑖, 𝑡𝑎𝑟𝑔𝑒𝑡𝑖, 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖) when 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 > 0}
if 𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =

{(𝑠𝑜𝑢𝑟𝑐𝑒𝑖, 𝑡𝑎𝑟𝑔𝑒𝑡𝑖, 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖) when 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 > 0}
∪ {(𝑡𝑎𝑟𝑔𝑒𝑡𝑖, 𝑠𝑜𝑢𝑟𝑐𝑒𝑖, 𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖) when 𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 > 0)}

if 𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ̸=

Maximum flow problem

Given:

• 𝐺(𝑉,𝐸)

• 𝑠𝑜𝑢𝑟𝑐𝑒_𝑣𝑒𝑟𝑡𝑒𝑥 ∈ 𝑉 the source vertex

• 𝑠𝑖𝑛𝑘_𝑣𝑒𝑟𝑡𝑒𝑥 ∈ 𝑉 the sink vertex

Then:

𝑝𝑔𝑟_𝑚𝑎𝑥𝐹𝑙𝑜𝑤(𝑒𝑑𝑔𝑒𝑠_𝑠𝑞𝑙, 𝑠𝑜𝑢𝑟𝑐𝑒, 𝑠𝑖𝑛𝑘) = Φ

Φ = (𝑖𝑑𝑖, 𝑒𝑑𝑔𝑒_𝑖𝑑𝑖, 𝑠𝑜𝑢𝑟𝑐𝑒𝑖, 𝑡𝑎𝑟𝑔𝑒𝑡𝑖, 𝑓 𝑙𝑜𝑤𝑖, 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖)

where:

Φ is a subset of the original edges with their residual capacity and flow. The maximum flow through
the graph can be obtained by aggregating on the source or sink and summing the flow from/to it. In
particular:

• 𝑖𝑑𝑖 = 𝑖

• 𝑒𝑑𝑔𝑒_𝑖𝑑 = 𝑖𝑑𝑖 in edges_sql

• 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 = 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 − 𝑓𝑙𝑜𝑤𝑖

See Also

• https://en.wikipedia.org/wiki/Maximum_flow_problem

230 Chapter 7. Available Functions but not official pgRouting functions

https://en.wikipedia.org/wiki/Maximum_flow_problem

pgRouting Manual, Release 2.3.2 (master)

Applications of Maximum Flow

• pgr_maximumCardinalityMatching - Proposed - Calculates a maximum cardinality matching in a graph.

• pgr_edgeDisjointPaths - Proposed - Calculates edge disjoint paths between two groups of vertices.

Maximum flow algorithms provide solutions to other graph problems.

Warning: These are proposed functions
• They are not officially of the current release.
• They likely will not be officially be part of the next release:

– The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
– Name might change.
– Signature might change.
– Functionality might change.
– pgTap tests might be missing.
– Might need c/c++ coding.
– May lack documentation.
– Documentation if any might need to be rewritten.
– Documentation examples might need to be automatically generated.
– Might need a lot of feedback from the comunity.
– Might depend on a proposed function of pgRouting
– Might depend on a deprecated function of pgRouting

pgr_maximumCardinalityMatching - Proposed

Name pgr_maximumCardinalityMatching — Calculates a maximum cardinality matching in a graph.

Warning: These are proposed functions
• They are not officially of the current release.
• They likely will not be officially be part of the next release:

– The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
– Name might change.
– Signature might change.
– Functionality might change.
– pgTap tests might be missing.
– Might need c/c++ coding.
– May lack documentation.
– Documentation if any might need to be rewritten.
– Documentation examples might need to be automatically generated.
– Might need a lot of feedback from the comunity.
– Might depend on a proposed function of pgRouting
– Might depend on a deprecated function of pgRouting

12

Fig. 7.12: Boost Graph Inside

Synopsis Calculates a maximum cardinality matching in a directed/undirected graph.

• A matching or independent edge set in a graph is a set of edges without common vertices.

• A maximum matching is a matching that contains the largest possible number of edges.

7.2. Experimental and Proposed functions 231

http://www.boost.org/libs/graph/doc/maximum_matching.html

pgRouting Manual, Release 2.3.2 (master)

• There may be many maximum matchings.

Characteristics:

The main characterics are:

• Calculates one possible maximum cardinality matching in a graph.

• The graph can be directed or undirected.

• Running time: 𝑂(𝐸 * 𝑉 * 𝛼(𝐸, 𝑉))

• 𝛼(𝐸, 𝑉) is the inverse of the Ackermann function13.

Signature Summary
pgr_MaximumCardinalityMatching(edges_sql)
pgr_MaximumCardinalityMatching(edges_sql, directed)

RETURNS SET OF (id, edge_id, source, target)
OR EMPTY SET

Signatures

Minimal signature
pgr_MaximumCardinalityMatching(edges_sql)
RETURNS SET OF (id, edge_id, source, target) OR EMPTY SET

The minimal signature calculates one possible maximum cardinality matching on a directed graph.

Example

SELECT * FROM pgr_maximumCardinalityMatching(
'SELECT id, source, target, cost AS going, reverse_cost AS coming FROM edge_table'

);
seq | edge_id | source | target

-----+---------+--------+--------
1 | 1 | 1 | 2
2 | 3 | 4 | 3
3 | 9 | 6 | 9
4 | 6 | 7 | 8
5 | 14 | 10 | 13
6 | 13 | 11 | 12
7 | 17 | 14 | 15
8 | 18 | 16 | 17

(8 rows)

Complete signature
pgr_MaximumCardinalityMatching(edges_sql, directed)
RETURNS SET OF (id, edge_id, source, target) OR EMPTY SET

The complete signature calculates one possible maximum cardinality matching.

Example

SELECT * FROM pgr_maximumCardinalityMatching(
'SELECT id, source, target, cost AS going, reverse_cost AS coming FROM edge_table',
directed := false

);

13https://en.wikipedia.org/wiki/Ackermann_function

232 Chapter 7. Available Functions but not official pgRouting functions

https://en.wikipedia.org/wiki/Ackermann_function

pgRouting Manual, Release 2.3.2 (master)

seq | edge_id | source | target
-----+---------+--------+--------

1 | 1 | 1 | 2
2 | 3 | 3 | 4
3 | 9 | 6 | 9
4 | 6 | 7 | 8
5 | 14 | 10 | 13
6 | 13 | 11 | 12
7 | 17 | 14 | 15
8 | 18 | 16 | 17

(8 rows)

Description of the Signatures

Description of the SQL query

edges_sql an SQL query, which should return a set of rows with the following columns:

Column Type Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
going ANY-NUMERIC A positive value represents the existence of the edge (source, target).
coming ANY-NUMERIC A positive value represents the existence of the edge (target, source).

Where:

• ANY-INTEGER SMALLINT, INTEGER, BIGINT

• ANY-NUMERIC SMALLINT, INTEGER, BIGINT, REAL, DOUBLE PRECISION

Description of the parameters of the signatures
Column Type Description
edges_sql TEXT SQL query as described above.
directed BOOLEAN (optional) Determines the type of the graph. Default TRUE.

Description of the Result

Column Type Description
seq INT Sequential value starting from 1.
edge_id BIGINT Identifier of the edge in the original query(edges_sql).
source BIGINT Identifier of the first end point vertex of the edge.
target BIGINT Identifier of the second end point vertex of the edge.

See Also

• Applications of Maximum Flow

• http://www.boost.org/libs/graph/doc/maximum_matching.html

• https://en.wikipedia.org/wiki/Matching_%28graph_theory%29

• https://en.wikipedia.org/wiki/Ackermann_function

Indices and tables

• genindex

• search

7.2. Experimental and Proposed functions 233

http://www.boost.org/libs/graph/doc/maximum_matching.html
https://en.wikipedia.org/wiki/Matching_%28graph_theory%29
https://en.wikipedia.org/wiki/Ackermann_function

pgRouting Manual, Release 2.3.2 (master)

pgr_edgeDisjointPaths - Proposed

Name pgr_edgeDisjointPaths — Calculates edge disjoint paths between two groups of vertices.

Warning: These are proposed functions
• They are not officially of the current release.
• They likely will not be officially be part of the next release:

– The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
– Name might change.
– Signature might change.
– Functionality might change.
– pgTap tests might be missing.
– Might need c/c++ coding.
– May lack documentation.
– Documentation if any might need to be rewritten.
– Documentation examples might need to be automatically generated.
– Might need a lot of feedback from the comunity.
– Might depend on a proposed function of pgRouting
– Might depend on a deprecated function of pgRouting

14

Fig. 7.13: Boost Graph Inside

Synopsis Calculates the edge disjoint paths between two groups of vertices. Utilizes underlying maximum flow
algorithms to calculate the paths.

Characteristics:

The main characterics are:

• Calculates the edge disjoint paths between any two groups of vertices.

• Returns EMPTY SET when source and destination are the same, or cannot be reached.

• The graph can be directed or undirected.

• One to many, many to one, many to many versions are also supported.

• Uses pgr_maxFlowBoykovKolmogorov - Proposed to calculate the paths.

• No cost or aggregate cost of the paths are returned. (Under discussion)

Signature Summary
pgr_edgeDisjointPaths(edges_sql, source_vertex, destination_vertex)
pgr_edgeDisjointPaths(edges_sql, source_vertex, destination_vertex, directed)
pgr_edgeDisjointPaths(edges_sql, source_vertices, destination_vertex, directed)
pgr_edgeDisjointPaths(edges_sql, source_vertex, destination_vertices, directed)
pgr_edgeDisjointPaths(edges_sql, source_vertices, destination_vertices, directed)

RETURNS SET OF (seq, path_seq, [start_vid,] [end_vid,] node, edge) OR EMPTY SET

Signatures

234 Chapter 7. Available Functions but not official pgRouting functions

http://www.boost.org/libs/graph/doc/boykov_kolmogorov_max_flow.html

pgRouting Manual, Release 2.3.2 (master)

Minimal signature
pgr_edgeDisjointPaths(edges_sql, source_vertex, destination_vertex)
RETURNS SET OF (seq, path_seq, node, edge) OR EMPTY SET

The minimal signature is between source_vertex and destination_vertex for a directed graph.

Example

SELECT * FROM pgr_edgeDisjointPaths(
'SELECT id, source, target, cost AS going, reverse_cost AS coming FROM edge_table',
3, 5

);
seq | path_seq | node | edge

-----+----------+------+------
1 | 1 | 3 | 2
2 | 2 | 2 | 4
3 | 3 | 5 | -1
4 | 1 | 3 | 5
5 | 2 | 6 | 8
6 | 3 | 5 | -1

(6 rows)

One to One The available signature calculates edge disjoint paths from one source vertex to one destination
vertex. The graph can be directed or undirected.

pgr_edgeDisjointPaths(edges_sql, source_vertex, destination_vertex, directed)
RETURNS SET OF (seq, path_seq, node, edge) OR EMPTY SET

Example

SELECT * FROM pgr_edgeDisjointPaths(
'SELECT id, source, target, cost AS going, reverse_cost AS coming FROM edge_table',
3, 5,
directed := false

);
seq | path_seq | node | edge

-----+----------+------+------
1 | 1 | 3 | 2
2 | 2 | 2 | 4
3 | 3 | 5 | -1
4 | 1 | 3 | 3
5 | 2 | 4 | 16
6 | 3 | 9 | 9
7 | 4 | 6 | 8
8 | 5 | 5 | -1
9 | 1 | 3 | 5
10 | 2 | 6 | 11
11 | 3 | 11 | 12
12 | 4 | 10 | 10
13 | 5 | 5 | -1

(13 rows)

One to Many The available signature calculates the maximum flow from one source vertex to many sink ver-
tices.

pgr_edgeDisjointPaths(edges_sql, source_vertex, destination_vertices, directed)
RETURNS SET OF (seq, path_seq, end_vid, node, edge) OR EMPTY SET

Example

7.2. Experimental and Proposed functions 235

pgRouting Manual, Release 2.3.2 (master)

SELECT * FROM pgr_edgeDisjointPaths(
'SELECT id, source, target, cost AS going, reverse_cost AS coming FROM edge_table',
3, ARRAY[4, 5, 10]

);
seq | path_seq | end_vid | node | edge

-----+----------+---------+------+------
1 | 1 | 5 | 3 | 2
2 | 2 | 5 | 2 | 4
3 | 3 | 5 | 5 | -1
4 | 1 | 5 | 3 | 5
5 | 2 | 5 | 6 | 8
6 | 3 | 5 | 5 | -1

(6 rows)

Many to One The available signature calculates the maximum flow from many source vertices to one sink
vertex.

pgr_edgeDisjointPaths(edges_sql, source_vertices, destination_vertex)
RETURNS SET OF (seq, path_seq, start_vid, node, edge)

OR EMPTY SET

Example

SELECT * FROM pgr_edgeDisjointPaths(
'SELECT id, source, target, cost AS going, reverse_cost AS coming FROM edge_table',
ARRAY[3, 6], 5

);
seq | path_seq | start_vid | node | edge

-----+----------+-----------+------+------
1 | 1 | 3 | 3 | 2
2 | 2 | 3 | 2 | 4
3 | 3 | 3 | 5 | -1
4 | 1 | 6 | 6 | 8
5 | 2 | 6 | 5 | -1

(5 rows)

Many to Many The available signature calculates the maximum flow from many sources to many sinks.

pgr_edgeDisjointPaths(edges_sql, source_vertices, destination_vertices, directed)
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge) OR EMPTY SET

Example

SELECT * FROM pgr_edgeDisjointPaths(
'SELECT id, source, target, cost AS going, reverse_cost AS coming FROM edge_table',
ARRAY[3, 6], ARRAY[4, 5, 10]

);
seq | path_seq | start_vid | end_vid | node | edge

-----+----------+-----------+---------+------+------
1 | 1 | 3 | 5 | 3 | 2
2 | 2 | 3 | 5 | 2 | 4
3 | 3 | 3 | 5 | 5 | -1
4 | 1 | 6 | 5 | 6 | 8
5 | 2 | 6 | 5 | 5 | -1
6 | 1 | 6 | 4 | 6 | 9
7 | 2 | 6 | 4 | 9 | 16
8 | 3 | 6 | 4 | 4 | -1

(8 rows)

236 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

Description of the Signatures

Description of the SQL query

edges_sql an SQL query, which should return a set of rows with the following columns:

Column Type Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
going ANY-NUMERIC A positive value represents the existence of the edge (source, target).
coming ANY-NUMERIC A positive value represents the existence of the edge (target, source).

Where:

• ANY-INTEGER SMALLINT, INTEGER, BIGINT

• ANY-NUMERIC SMALLINT, INTEGER, BIGINT, REAL, DOUBLE PRECISION

Description of the parameters of the signatures

Column Type Description
edges_sql TEXT SQL query as described above.
source_vertex BIGINT Identifier(s) of the source vertex(vertices).
sink_vertex BIGINT Identifier(s) of the destination vertex(vertices).
directed BOOLEAN (optional) Determines the type of the graph. Default TRUE.

Description of the return values

Col-
umn

Type Description

seq INT Sequential value starting from 1.
path_-
seq

INT Relative position in the path. Has value 1 for the beginning of a path.

start_-
vid

BIGINT Identifier of the starting vertex. Used when multiple starting vertices are in the query.

end_-
vid

BIGINT Identifier of the ending vertex. Used when multiple ending vertices are in the query.

node BIGINT Identifier of the node in the path from start_vid to end_vid.
edge BIGINT Identifier of the edge used to go from node to the next node in the path sequence. -1 for

the last node of the path.

Indices and tables

• genindex

• search

Applications

Maximum cardinality matching

• A matching or independent edge set in a graph is a set of edges without common vertices.

• A maximum matching is a matching that contains the largest possible number of edges.

• There may be many maximum matchings.

• The graph can be directed or undirected.

The pgr_maximumCardinalityMatching - Proposed function can be used to calculate one such maximum match-
ing.

7.2. Experimental and Proposed functions 237

pgRouting Manual, Release 2.3.2 (master)

Edge disjoint paths In a undirected/directed graph, two paths are edge-disjoint(or edge-independant) if they do
not have any internal edge in common.

While the number of maximum edge disjoint paths is fixed, there may be several different routes.

The pgr_edgeDisjointPaths - Proposed function returns the maximum number of paths and possible routes.

See Also

• https://en.wikipedia.org/wiki/Maximum_flow_problem#Application

pgr_pointToEdgeNode - Proposed

Name

pgr_pointToEdgeNode - Converts a point to a vertex_id based on closest edge.

Warning: These are proposed functions
• They are not officially of the current release.
• They likely will not be officially be part of the next release:

– The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
– Name might change.
– Signature might change.
– Functionality might change.
– pgTap tests might be missing.
– Might need c/c++ coding.
– May lack documentation.
– Documentation if any might need to be rewritten.
– Documentation examples might need to be automatically generated.
– Might need a lot of feedback from the comunity.
– Might depend on a proposed function of pgRouting
– Might depend on a deprecated function of pgRouting

Synopsis

The function returns:

• integer that is the vertex id of the closest edge in the edges table within the tol tolerance of pnt. The
vertex is selected by projection the pnt onto the edge and selecting which vertex is closer along the edge.

integer pgr_pointToEdgeNode(edges text, pnt geometry, tol float8)

Description

Given an table edges with a spatial index on the_geom and a point geometry search for the closest edge within
tol distance to the edges then compute the projection of the point onto the line segment and select source or
target based on whether the projected point is closer to the respective end and return the source or target value.

Parameters

The function accepts the following parameters:

edges text The name of the edge table or view. (may contain the schema name AS well).

pnt geometry A point geometry object in the same SRID as edges.

238 Chapter 7. Available Functions but not official pgRouting functions

https://en.wikipedia.org/wiki/Maximum_flow_problem#Application

pgRouting Manual, Release 2.3.2 (master)

tol float8 The maximum search distance for an edge.

Warning: If no edge is within tol distance then return -1

The edges table must have the following columns:

• source

• target

• the_geom

History

• Proposed in version 2.1.0

Examples

SELECT * FROM pgr_pointtoedgenode('edge_table', 'POINT(2 0)'::geometry, 0.02);
pgr_pointtoedgenode

1

(1 row)

SELECT * FROM pgr_pointtoedgenode('edge_table', 'POINT(3 2)'::geometry, 0.02);
pgr_pointtoedgenode

6

(1 row)

The example uses the Sample Data network.

See Also

• pgr_pointsToVids - Proposed - convert an array of point geometries into vertex ids.

Indices and tables

• genindex

• search

pgr_pointsToVids - Proposed

Name

pgr_pointsToVids - Converts an array of point geometries into vertex ids.

7.2. Experimental and Proposed functions 239

pgRouting Manual, Release 2.3.2 (master)

Warning: These are proposed functions
• They are not officially of the current release.
• They likely will not be officially be part of the next release:

– The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
– Name might change.
– Signature might change.
– Functionality might change.
– pgTap tests might be missing.
– Might need c/c++ coding.
– May lack documentation.
– Documentation if any might need to be rewritten.
– Documentation examples might need to be automatically generated.
– Might need a lot of feedback from the comunity.
– Might depend on a proposed function of pgRouting
– Might depend on a deprecated function of pgRouting

Synopsis

Given an array of point geometries and an edge table and a max search tol distance the function converts points
into vertex ids using pgr_pointtoedgenode().

The function returns:

• integer[] - An array of vertex_id.

integer[] pgr_pointsToVids(pnts geometry[], edges text, tol float8 DEFAULT(0.01))

Description

Parameters

pnts geometry[] - An array of point geometries.

edges text - The edge table to be used for the conversion.

tol float8 - The maximum search distance for locating the closest edge.

Warning: You need to check the results for any vids=-1 which indicates if failed to locate an edge.

History

• Proposed in version 2.1.0

Examples

SELECT * FROM pgr_pointstovids(
pgr_texttopoints('2,0;2,1;3,1;2,2', 0),
'edge_table'

);
NOTICE: Deperecated function: pgr_textToPoints
pgr_pointstovids

{1,2,3,5}

(1 row)

240 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

This example uses the Sample Data network.

See Also

• pgr_pointToEdgeNode - Proposed - convert a point geometry to the closest vertex_id of an edge..

Indices and tables

• genindex

• search

pgr_labelGraph - Proposed

Name

pgr_labelGraph — Locates and labels sub-networks within a network which are not topologically connected.

Warning: These are proposed functions
• They are not officially of the current release.
• They likely will not be officially be part of the next release:

– The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
– Name might change.
– Signature might change.
– Functionality might change.
– pgTap tests might be missing.
– Might need c/c++ coding.
– May lack documentation.
– Documentation if any might need to be rewritten.
– Documentation examples might need to be automatically generated.
– Might need a lot of feedback from the comunity.
– Might depend on a proposed function of pgRouting
– Might depend on a deprecated function of pgRouting

Synopsis

Must be run after pgr_createTopology(). No use of geometry column. Only id, source and target
columns are required.

The function returns:

• OK when a column with provided name has been generated and populated successfully. All connected
edges will have unique similar integer values. In case of rows_where condition, non participating rows
will have -1 integer values.

• FAIL when the processing cannot be finished due to some error. Notice will be thrown accordingly.

• rows_where condition generated 0 rows when passed SQL condition has not been fulfilled
by any row.

varchar pgr_labelGraph(text, text, text, text, text, text)

7.2. Experimental and Proposed functions 241

pgRouting Manual, Release 2.3.2 (master)

Description

A network behind any routing query may consist of sub-networks completely isolated from each other. Possible
reasons could be:

• An island with no bridge connecting to the mainland.

• An edge or mesh of edges failed to connect to other networks because of human negligence during data
generation.

• The data is not properly noded.

• Topology creation failed to succeed.

pgr_labelGraph() will create an integer column (with the name provided by the user) and will assign same integer
values to all those edges in the network which are connected topologically. Thus better analysis regarding network
structure is possible. In case of rows_where condition, non participating rows will have -1 integer values.

Prerequisites: Must run pgr_createTopology() in order to generate source and target columns. Pri-
mary key column id should also be there in the network table.

Function accepts the following parameters:

edge_table text Network table name, with optional schema name.

id text Primary key column name of the network table. Default is id.

source text Source column name generated after pgr_createTopology(). Default is
source.

target text Target column name generated after pgr_createTopology(). Default is
target.

subgraph text Column name which will hold the integer labels for each sub-graph. Default is
subgraph.

rows_where text The SQL where condition. Default is true, means the processing will be done
on the whole table.

Example Usage

The sample data, has 3 subgraphs.

SELECT pgr_labelGraph('edge_table', 'id', 'source', 'target', 'subgraph');
pgr_labelgraph

OK

(1 row)

SELECT subgraph, count(*) FROM edge_table group by subgraph;
subgraph | count

----------+-------
1 | 16
3 | 1
2 | 1

(3 rows)

See Also

• pgr_createTopology15 to create the topology of a table based on its geometry and tolerance value.

15https://github.com/Zia-/pgrouting/blob/develop/src/common/sql/pgrouting_topology.sql

242 Chapter 7. Available Functions but not official pgRouting functions

https://github.com/Zia-/pgrouting/blob/develop/src/common/sql/pgrouting_topology.sql

pgRouting Manual, Release 2.3.2 (master)

pgr_gsoc_vrppdtw - Proposed

Name

pgr_gsoc_vrppdtw — Returns a solution for Pick and Delivery with time windows Vehicle Routing Problem

Warning: These are proposed functions
• They are not officially of the current release.
• They likely will not be officially be part of the next release:

– The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
– Name might change.
– Signature might change.
– Functionality might change.
– pgTap tests might be missing.
– Might need c/c++ coding.
– May lack documentation.
– Documentation if any might need to be rewritten.
– Documentation examples might need to be automatically generated.
– Might need a lot of feedback from the comunity.
– Might depend on a proposed function of pgRouting
– Might depend on a deprecated function of pgRouting

Signature Summary

pgr_gsoc_vrppdtw(sql, vehicle_num, capacity)
RETURNS SET OF pgr_costResult[]:

Signatures

Complete signature
pgr_gsoc_vrppdtw(sql, vehicle_num, capacity)
Returns set of pgr_costResult[]:

Example: Show the id1

SELECT DISTINCT(id1) FROM pgr_gsoc_vrppdtw(
'SELECT * FROM customer ORDER BY id', 25, 200)

ORDER BY id1;
id1

1
2
3
4
5
6
7
8
9
10

(10 rows)

7.2. Experimental and Proposed functions 243

pgRouting Manual, Release 2.3.2 (master)

Description of the Signatures

Description of the sql query

Column Type Description
id ANY-INTEGER Identifier of the customer.

• A value of 0 identifies the
starting location

x ANY-NUMERICAL X coordinate of the location.
y ANY-NUMERICAL Y coordinate of the location.
demand ANY-NUMERICAL How much is added / removed from

the vehicle.
• Negative value is a delivery,
• Positive value is a pickup,

openTime ANY-NUMERICAL The time relative to 0, when the cus-
tomer opens.

closeTime ANY-NUMERICAL The time relative to 0, when the cus-
tomer closes.

serviceTime ANY-NUMERICAL The duration of the loading / un-
loading.

pIndex ANY-INTEGER Value used when the current cus-
tomer is a Delivery to find the cor-
responding Pickup

dIndex ANY-INTEGER Value used when the current cus-
tomer is a Pickup to find the corre-
sponding Delivery

Description of the parameters of the signatures

Column Type Description
sql TEXT SQL query as described above.
vehicle_num INTEGER Maximum number of vehicles in the result. (currently is ignored)
capacity INTEGER Capacity of the vehicle.

Description of the result RETURNS SET OF pgr_costResult[]:

Column Type Description
seq INTEGER Sequential value starting from 1.
id1 INTEGER Current vehicle identifier.
id2 INTEGER Customer identifier.
cost FLOAT

Previous cost plus travel time plus wait time plus service time.

• when id2 = 0 for
the second time for the
same id1, then has the
total time for the current
id1

Examples

Example: Total number of rows returned

SELECT count(*) FROM pgr_gsoc_vrppdtw(
'SELECT * FROM customer ORDER BY id', 25, 200);

count

244 Chapter 7. Available Functions but not official pgRouting functions

pgRouting Manual, Release 2.3.2 (master)

126

(1 row)

Example: Results for only id1 values: 1, 5, and 9

SELECT * FROM pgr_gsoc_vrppdtw(
'SELECT * FROM customer ORDER BY id', 25, 200)
WHERE id1 in (1, 5, 9);

seq | id1 | id2 | cost
-----+-----+-----+------------------

1 | 1 | 0 | 0
2 | 1 | 5 | 105.132745950422
3 | 1 | 3 | 196.132745950422
4 | 1 | 7 | 288.132745950422
5 | 1 | 8 | 380.961173075168
6 | 1 | 10 | 474.566724350632
7 | 1 | 11 | 567.566724350632
8 | 1 | 9 | 660.7290020108
9 | 1 | 6 | 752.9650699883
10 | 1 | 4 | 845.2011379658
11 | 1 | 2 | 938.806689241264
12 | 1 | 1 | 1030.80668924126
13 | 1 | 75 | 1123.80668924126
14 | 1 | 0 | 1139.61807754211
51 | 5 | 0 | 0
52 | 5 | 43 | 106.552945357247
53 | 5 | 42 | 199.552945357247
54 | 5 | 41 | 291.552945357247
55 | 5 | 40 | 383.552945357247
56 | 5 | 44 | 476.552945357247
57 | 5 | 46 | 569.381372481993
58 | 5 | 45 | 661.381372481993
59 | 5 | 48 | 753.381372481993
60 | 5 | 51 | 756.381372481993
61 | 5 | 101 | 846.381372481993
62 | 5 | 50 | 938.617440459493
63 | 5 | 52 | 1031.77971811966
64 | 5 | 49 | 1124.77971811966
65 | 5 | 47 | 1216.77971811966
66 | 5 | 0 | 1234.80747449698

103 | 9 | 0 | 0
104 | 9 | 90 | 110.615528128088
105 | 9 | 87 | 205.615528128088
106 | 9 | 86 | 296.615528128088
107 | 9 | 83 | 392.615528128088
108 | 9 | 82 | 485.615528128088
109 | 9 | 84 | 581.446480022934
110 | 9 | 85 | 674.27490714768
111 | 9 | 88 | 767.27490714768
112 | 9 | 89 | 860.103334272426
113 | 9 | 91 | 953.70888554789
114 | 9 | 0 | 976.069565322888

(42 rows)

See Also

• The examples use Pick & Deliver Data

7.2. Experimental and Proposed functions 245

pgRouting Manual, Release 2.3.2 (master)

• http://en.wikipedia.org/wiki/Vehicle_routing_problem

pgr_vrpOneDepot - Proposed

Warning: These are proposed functions
• They are not officially of the current release.
• They likely will not be officially be part of the next release:

– The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
– Name might change.
– Signature might change.
– Functionality might change.
– pgTap tests might be missing.
– Might need c/c++ coding.
– May lack documentation.
– Documentation if any might need to be rewritten.
– Documentation examples might need to be automatically generated.
– Might need a lot of feedback from the comunity.
– Might depend on a proposed function of pgRouting
– Might depend on a deprecated function of pgRouting

No documentation available from the original developer

• pgr_costResult[]

• http://en.wikipedia.org/wiki/Vehicle_routing_problem

246 Chapter 7. Available Functions but not official pgRouting functions

http://en.wikipedia.org/wiki/Vehicle_routing_problem
http://en.wikipedia.org/wiki/Vehicle_routing_problem

CHAPTER 8

Discontinued & Deprecated Functions

• Discontinued Functions

• Deprecated Functions

8.1 Discontinued Functions

Especially with new major releases functionality may change and functions may be discontinued for various
reasons. Functionality that has been discontinued will be listed here.

8.1.1 Shooting Star algorithm

Version Discontinued on 2.0.0

Reasons Unresolved bugs, no maintainer, replaced with pgr_trsp - Turn Restriction Shortest Path
(TRSP)

Comment Please contact us if you’re interested to sponsor or maintain this algorithm.

8.2 Deprecated Functions

Warning: These functions are deprecated!!!
• That means they have been replaced by new functions or are no longer supported, and may be removed

from future versions.
• All code that uses the functions should be converted to use its replacement if one exists.

8.2.1 Deprecated on version 2.3

Routing functions

• pgr_astar - Deprecated Signature - See new signatures of pgr_aStar

• pgr_tsp -Deprecated Signatures - See new signatures of Traveling Sales Person

Auxiliary functions

• pgr_flipEdges - Deprecated Function

• pgr_vidsToDMatrix - Deprecated Function

247

pgRouting Manual, Release 2.3.2 (master)

• pgr_vidsToDMatrix - Deprecated Function

• pgr_pointsToDMatrix - Deprecated Function

• pgr_textToPoints - Deprecated Function

pgr_astar - Deprecated Signature

Warning: This function signature is deprecated!!!
• That means it has been replaced by new signature(s)
• This signature is no longer supported, and may be removed from future versions.
• All code that use this function signature should be converted to use its replacement pgr_aStar.

Name pgr_astar — Returns the shortest path using A* algorithm.

Synopsis The A* (pronounced “A Star”) algorithm is based on Dijkstra’s algorithm with a heuristic that allow
it to solve most shortest path problems by evaluation only a sub-set of the overall graph. Returns a set of pgr_-
costResult (seq, id1, id2, cost) rows, that make up a path.

pgr_costResult[] pgr_astar(sql text, source integer, target integer,
directed boolean, has_rcost boolean);

Description

sql a SQL query, which should return a set of rows with the following columns:

SELECT id, source, target, cost, x1, y1, x2, y2 [,reverse_cost] FROM edge_table

id int4 identifier of the edge

source int4 identifier of the source vertex

target int4 identifier of the target vertex

cost float8 value, of the edge traversal cost. A negative cost will prevent the edge
from being inserted in the graph.

x1 x coordinate of the start point of the edge

y1 y coordinate of the start point of the edge

x2 x coordinate of the end point of the edge

y2 y coordinate of the end point of the edge

reverse_cost (optional) the cost for the reverse traversal of the edge. This is only
used when the directed and has_rcost parameters are true (see the above
remark about negative costs).

source int4 id of the start point

target int4 id of the end point

directed true if the graph is directed

has_rcost if true, the reverse_cost column of the SQL generated set of rows will be used for
the cost of the traversal of the edge in the opposite direction.

Returns set of pgr_costResult[]:

seq row sequence

id1 node ID

248 Chapter 8. Discontinued & Deprecated Functions

pgRouting Manual, Release 2.3.2 (master)

id2 edge ID (-1 for the last row)

cost cost to traverse from id1 using id2

History

• Renamed in version 2.0.0

Examples

• Without reverse_cost

SELECT * FROM pgr_AStar(
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, x1, y1, x2, y2
FROM edge_table',

4, 1, false, false);
NOTICE: Deprecated signature of function pgr_astar
seq | id1 | id2 | cost

-----+-----+-----+------
0 | 4 | 16 | 1
1 | 9 | 9 | 1
2 | 6 | 8 | 1
3 | 5 | 4 | 1
4 | 2 | 1 | 1
5 | 1 | -1 | 0

(6 rows)

• With reverse_cost

SELECT * FROM pgr_AStar(
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, x1, y1, x2, y2, reverse_cost

FROM edge_table ',
4, 1, true, true);

NOTICE: Deprecated signature of function pgr_astar
seq | id1 | id2 | cost

-----+-----+-----+------
0 | 4 | 3 | 1
1 | 3 | 2 | 1
2 | 2 | 1 | 1
3 | 1 | -1 | 0

(4 rows)

The queries use the Sample Data network.

See Also

• pgr_aStar

• pgr_costResult[]

• http://en.wikipedia.org/wiki/A*_search_algorithm

pgr_tsp -Deprecated Signatures

Warning: These functions signatures are deprecated!!!
• That means they has been replaced by new signatures.
• These signatures are no longer supported, and may be removed from future versions.
• All code that use these functions signatures should be converted to use its replacement.

8.2. Deprecated Functions 249

http://en.wikipedia.org/wiki/A*_search_algorithm

pgRouting Manual, Release 2.3.2 (master)

Name

• pgr_tsp - Returns the best route from a start node via a list of nodes.

Warning: Use pgr_eucledianTSP instead.

• pgr_tsp - Returns the best route order when passed a disance matrix.

Warning: Use pgr_TSP instead.

• _pgr_makeDistanceMatrix - Returns a Eucleadian distance Matrix from the points provided in the
sql result.

Warning: There is no replacement.

Synopsis The travelling salesman problem (TSP) or travelling salesperson problem asks the following question:
Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits
each city exactly once and returns to the origin city? This algorithm uses simulated annealing to return a high
quality approximate solution. Returns a set of pgr_costResult (seq, id1, id2, cost) rows, that make up a path.

pgr_costResult[] pgr_tsp(sql text, start_id integer);
pgr_costResult[] pgr_tsp(sql text, start_id integer, end_id integer);

Returns a set of (seq integer, id1 integer, id2 integer, cost float8) that is the best order to visit the nodes in the
matrix. id1 is the index into the distance matrix. id2 is the point id from the sql.

If no end_id is supplied or it is -1 or equal to the start_id then the TSP result is assumed to be a circluar loop
returning back to the start. If end_id is supplied then the route is assumed to start and end the the designated ids.

record[] pgr_tsp(matrix float[][], start integer)
record[] pgr_tsp(matrix float[][], start integer, end integer)

Description

With Euclidean distances

The TSP solver is based on ordering the points using straight line (euclidean) distance 1 between nodes. The
implementation is using an approximation algorithm that is very fast. It is not an exact solution, but it is guaranteed
that a solution is returned after certain number of iterations.

sql a SQL query, which should return a set of rows with the following columns:

SELECT id, x, y FROM vertex_table

id int4 identifier of the vertex

x float8 x-coordinate

y float8 y-coordinate

start_id int4 id of the start point

end_id int4 id of the end point, This is OPTIONAL, if include the route is optimized from start to
end, otherwise it is assumed that the start and the end are the same point.

The function returns set of pgr_costResult[]:

1 There was some thought given to pre-calculating the driving distances between the nodes using Dijkstra, but then I read a paper (unfortu-
nately I don’t remember who wrote it), where it was proved that the quality of TSP with euclidean distance is only slightly worse than one with
real distance in case of normal city layout. In case of very sparse network or rivers and bridges it becomes more inaccurate, but still wholly
satisfactory. Of course it is nice to have exact solution, but this is a compromise between quality and speed (and development time also). If
you need a more accurate solution, you can generate a distance matrix and use that form of the function to get your results.

250 Chapter 8. Discontinued & Deprecated Functions

pgRouting Manual, Release 2.3.2 (master)

seq row sequence

id1 internal index to the distance matric

id2 id of the node

cost cost to traverse from the current node to the next node.

Create a distance matrix

For users that need a distance matrix we have a simple function that takes SQL in sql as described above and
returns a record with dmatrix and ids.

SELECT dmatrix, ids from _pgr_makeDistanceMatrix('SELECT id, x, y FROM vertex_table');

The function returns a record of dmatrix, ids:

dmatrix float8[][] a symeteric Euclidean distance matrix based on sql.

ids integer[] an array of ids as they are ordered in the distance matrix.

With distance matrix

For users, that do not want to use Euclidean distances, we also provode the ability to pass a distance matrix that we
will solve and return an ordered list of nodes for the best order to visit each. It is up to the user to fully populate
the distance matrix.

matrix float[][] distance matrix of points

start int4 index of the start point

end int4 (optional) index of the end node

The end node is an optional parameter, you can just leave it out if you want a loop where the start is the depot
and the route returns back to the depot. If you include the end parameter, we optimize the path from start to
end and minimize the distance of the route while include the remaining points.

The distance matrix is a multidimensional PostgreSQL array type1 that must be N x N in size.

The result will be N records of [seq, id]:

seq row sequence

id index into the matrix

History

• Renamed in version 2.0.0

• GAUL dependency removed in version 2.0.0

Examples

• Using SQL parameter (all points from the table, atarting from 6 and ending at 5). We have listed two queries
in this example, the first might vary from system to system because there are multiple equivalent answers.
The second query should be stable in that the length optimal route should be the same regardless of order.

CREATE TABLE vertex_table (
id serial,
x double precision,
y double precision

);

1http://www.postgresql.org/docs/9.1/static/arrays.html

8.2. Deprecated Functions 251

http://www.postgresql.org/docs/9.1/static/arrays.html

pgRouting Manual, Release 2.3.2 (master)

INSERT INTO vertex_table VALUES
(1,2,0), (2,2,1), (3,3,1), (4,4,1), (5,0,2), (6,1,2), (7,2,2),
(8,3,2), (9,4,2), (10,2,3), (11,3,3), (12,4,3), (13,2,4);

SELECT seq, id1, id2, round(cost::numeric, 2) AS cost
FROM pgr_tsp('SELECT id, x, y FROM vertex_table ORDER BY id', 6, 5);

seq | id1 | id2 | cost
-----+-----+-----+------

0 | 5 | 6 | 1.00
1 | 6 | 7 | 1.00
2 | 7 | 8 | 1.41
3 | 1 | 2 | 1.00
4 | 0 | 1 | 1.41
5 | 2 | 3 | 1.00
6 | 3 | 4 | 1.00
7 | 8 | 9 | 1.00
8 | 11 | 12 | 1.00
9 | 10 | 11 | 1.41

10 | 12 | 13 | 1.00
11 | 9 | 10 | 2.24
12 | 4 | 5 | 1.00

(13 rows)

SELECT round(sum(cost)::numeric, 4) as cost
FROM pgr_tsp('SELECT id, x, y FROM vertex_table ORDER BY id', 6, 5);

cost

15.4787

(1 row)

• Using distance matrix (A loop starting from 1)

When using just the start node you are getting a loop that starts with 1, in this case, and travels through the other
nodes and is implied to return to the start node from the last one in the list. Since this is a circle there are at least
two possible paths, one clockwise and one counter-clockwise that will have the same length and be equall valid.
So in the following example it is also possible to get back a sequence of ids = {1,0,3,2} instead of the {1,2,3,0}
sequence listed below.

SELECT seq, id FROM pgr_tsp('{{0,1,2,3},{1,0,4,5},{2,4,0,6},{3,5,6,0}}'::float8[],1);

seq | id
-----+----

0 | 1
1 | 2
2 | 3
3 | 0

(4 rows)

• Using distance matrix (Starting from 1, ending at 2)

SELECT seq, id FROM pgr_tsp('{{0,1,2,3},{1,0,4,5},{2,4,0,6},{3,5,6,0}}'::float8[],1,2);

seq | id
-----+----

0 | 1
1 | 0
2 | 3
3 | 2

(4 rows)

• Using the vertices table edge_table_vertices_pgr generated by pgr_createTopology. Again we have two

252 Chapter 8. Discontinued & Deprecated Functions

pgRouting Manual, Release 2.3.2 (master)

queries where the first might vary and the second is based on the overal path length.

SELECT seq, id1, id2, round(cost::numeric, 2) AS cost
FROM pgr_tsp('SELECT id::integer, st_x(the_geom) as x,st_x(the_geom) as y FROM edge_table_vertices_pgr ORDER BY id', 6, 5);

seq | id1 | id2 | cost
-----+-----+-----+------

0 | 5 | 6 | 0.00
1 | 10 | 11 | 0.00
2 | 2 | 3 | 1.41
3 | 3 | 4 | 0.00
4 | 11 | 12 | 0.00
5 | 8 | 9 | 0.71
6 | 15 | 16 | 0.00
7 | 16 | 17 | 2.12
8 | 1 | 2 | 0.00
9 | 14 | 15 | 1.41

10 | 7 | 8 | 1.41
11 | 6 | 7 | 0.71
12 | 13 | 14 | 2.12
13 | 0 | 1 | 0.00
14 | 9 | 10 | 0.00
15 | 12 | 13 | 0.00
16 | 4 | 5 | 1.41

(17 rows)

SELECT round(sum(cost)::numeric, 4) as cost
FROM pgr_tsp('SELECT id::integer, st_x(the_geom) as x,st_x(the_geom) as y FROM edge_table_vertices_pgr ORDER BY id', 6, 5);

cost

11.3137

(1 row)

The queries use the Sample Data network.

See Also

• Traveling Sales Person, pgr_TSP, pgr_eucledianTSP

• pgr_costResult[]

• http://en.wikipedia.org/wiki/Traveling_salesman_problem

• http://en.wikipedia.org/wiki/Simulated_annealing

pgr_flipEdges - Deprecated Function

Warning: This function is deprecated!!!
• Is no longer supported.
• May be removed from future versions.
• There is no replacement.

Name pgr_flipEdges - flip the edges in an array of geometries so the connect end to end.

Synopsis The function returns:

• geometry[] An array of the input geometries with the geometries flipped end to end such that the ge-
ometries are oriented as a path from start to end.

8.2. Deprecated Functions 253

http://en.wikipedia.org/wiki/Traveling_salesman_problem
http://en.wikipedia.org/wiki/Simulated_annealing

pgRouting Manual, Release 2.3.2 (master)

geometry[] pgr_flipEdges(ga geometry[])

Description Given an array of linestrings that are supposedly connected end to end like the results of a route,
check the edges and flip any end for end if they do not connect with the previous seegment and return the array
with the segments flipped as appropriate.

Parameters

ga geometry[] An array of geometries, like the results of a routing query.

Warning:
• No checking is done for edges that do not connect.
• Input geometries MUST be LINESTRING or MULTILINESTRING.
• Only the first LINESTRING of a MULTILINESTRING is considered.

History

• Deprecated in version 2.3.0

• Proposed in version 2.1.0

Examples
SELECT st_astext(e) FROM (SELECT unnest(pgr_flipedges(ARRAY[
'LINESTRING(2 1,2 2)'::geometry,
'LINESTRING(2 2,2 3)'::geometry,
'LINESTRING(2 2,2 3)'::geometry,
'LINESTRING(2 2,3 2)'::geometry,
'LINESTRING(3 2,4 2)'::geometry,
'LINESTRING(4 1,4 2)'::geometry,
'LINESTRING(3 1,4 1)'::geometry,
'LINESTRING(2 1,3 1)'::geometry,
'LINESTRING(2 0,2 1)'::geometry,
'LINESTRING(2 0,2 1)'::geometry]::geometry[])) AS e) AS foo;
NOTICE: Deperecated function: pgr_flipEdges

st_astext

LINESTRING(2 1,2 2)
LINESTRING(2 2,2 3)
LINESTRING(2 3,2 2)
LINESTRING(2 2,3 2)
LINESTRING(3 2,4 2)
LINESTRING(4 2,4 1)
LINESTRING(4 1,3 1)
LINESTRING(3 1,2 1)
LINESTRING(2 1,2 0)
LINESTRING(2 0,2 1)

(10 rows)

See also

Indices and tables

• genindex

254 Chapter 8. Discontinued & Deprecated Functions

pgRouting Manual, Release 2.3.2 (master)

• search

pgr_vidsToDMatrix - Deprecated Function

Warning: This function is deprecated!!!
• Is no longer supported.
• May be removed from future versions.
• There is no replacement.

Name pgr_vidsToDMatrix - Creates a distances matrix from an array of vertex_id.

Synopsis This function takes an array of vertex_id, the original array of points used to generate the array of
vertex_id, an edge table name and a tol. It then computes kdijkstra() distances for each vertex to all the other
vertices and creates a symmetric distance matrix suitable for TSP. The pnt array and the tol are used to establish a
BBOX for limiting selection of edges. The extents of the points is expanded by tol.

The function returns:

• record - with two fields as describe here

– dmatrix float8[] - the distance matrix suitable to pass to pgrTSP() function.

– ids integer[] - an array of ids for the distance matrix.

record pgr_vidsToDMatrix(IN vids integer[], IN pnts geometry[], IN edges text, tol float8 DEFAULT(0.1), OUT dmatrix double precision[], OUT ids integer[])

Description

Parameters

vids integer[] - An array of vertex_id.

pnts geometry[] - An array of point geometries that approximates the extents of the vertex_-
id.

edges text - The edge table to be used for the conversion.

tol float8 - The amount to expand the BBOX extents of pnts when building the graph.

Warning:
• we compute a symmetric matrix because TSP requires that so the distances are better the Euclidean but

but are not perfect
• kdijkstra() can fail to find a path between some of the vertex ids. We to not detect this other than the cost

might get set to -1.0, so the dmatrix should be checked for this as it makes it invalid for TSP

History

• Proposed in version 2.1.0

Examples This example uses existing data of points.

8.2. Deprecated Functions 255

pgRouting Manual, Release 2.3.2 (master)

SELECT * FROM pgr_vidstodmatrix(
ARRAY[1,2,3,5],
ARRAY(select the_geom FROM edge_table_vertices_pgr WHERE id in (1,2,3,5)),
'edge_table'

);
NOTICE: Deprecated function pgr_vidsToDMatrix

dmatrix | ids
---+-----------
{{0,1,4,2},{1,0,3,1},{4,3,0,2},{2,1,2,0}} | {1,2,3,5}

(1 row)

This example uses points that are not part of the graph.

• pgr_textToPoints - Deprecated Function - is used to convert the locations into point geometries.

• pgr_pointsToVids - Proposed - to convert the array of point geometries into vertex ids.

SELECT * FROM pgr_vidstodmatrix(
pgr_pointstovids(pgr_texttopoints('2,0;2,1;3,1;2,2', 0), 'edge_table'),
pgr_texttopoints('2,0;2,1;3,1;2,2', 0),
'edge_table');

NOTICE: Deperecated function: pgr_textToPoints
NOTICE: Deperecated function: pgr_textToPoints
NOTICE: Deprecated function pgr_vidsToDMatrix

dmatrix | ids
---+-----------
{{0,1,4,2},{1,0,3,1},{4,3,0,2},{2,1,2,0}} | {1,2,3,5}

(1 row)

This example shows how this can be used in the context of feeding the results into pgr_tsp() function.

SELECT * FROM pgr_tsp(
(SELECT dMatrix FROM pgr_vidstodmatrix(

pgr_pointstovids(pgr_texttopoints('2,0;2,1;3,1;2,2', 0), 'edge_table'),
pgr_texttopoints('2,0;2,1;3,1;2,2', 0),
'edge_table')

),
1

);
NOTICE: Deperecated function: pgr_textToPoints
NOTICE: Deperecated function: pgr_textToPoints
NOTICE: Deprecated function pgr_vidsToDMatrix
seq | id

-----+----
0 | 1
1 | 2
2 | 3
3 | 0

(4 rows)

This example uses the Sample Data network.

See Also

• pgr_vidsToDMatrix - Deprecated Function

• pgr_textToPoints - Deprecated Function

• pgr_tsp -Deprecated Signatures

256 Chapter 8. Discontinued & Deprecated Functions

pgRouting Manual, Release 2.3.2 (master)

Indices and tables

• genindex

• search

pgr_vidsToDMatrix - Deprecated Function

Warning: This function is deprecated!!!
• Is no longer supported.
• May be removed from future versions.
• There is no replacement.

Name pgr_vidsToDMatrix - Creates a distances matrix from an array of vertex_id.

Synopsis This function takes an array of vertex_id, a sql statement to select the edges, and some boolean
arguments to control the behavior. It then computes kdijkstra() distances for each vertex to all the other vertices
and creates a distance matrix suitable for TSP.

The function returns:

• dmatrix float8[] - the distance matrix suitable to pass to pgr_TSP() function.

pgr_vidsToDMatrix(IN sql text, IN vids integer[], IN directed boolean, IN has_reverse_cost boolean, IN want_symmetric boolean, OUT dmatrix double precision[])

Description

Parameters

sql text - A SQL statement to select the edges needed for the solution.

vids integer[] - An array of vertex_id.

directed boolean - A flag to indicate if the graph is directed.

has_reverse_cost boolean - A flag to indicate if the SQL has a column reverse_cost.

want_symmetric boolean - A flag to indicate if you want a symmetric or asymmetric matrix. You
will need a symmetric matrix for pgr_TSP(). If the matriix is asymmetric, the then the cell(i,j)
and cell(j,i) will be set to the average of those two cells except if one or the other are -1.0 then
it will take the value of the other cell. If both are negative they will be left alone.

Warning:
• kdijkstra() can fail to find a path between some of the vertex ids. We to not detect this other than the cost

might get set to -1.0, so the dmatrix should be checked for this as it makes it invalid for TSP

History

• Proposed in version 2.1.0

Examples

8.2. Deprecated Functions 257

pgRouting Manual, Release 2.3.2 (master)

SELECT * FROM pgr_vidsToDMatrix(
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table',
array[1,2,3,5],
true, true, false);

NOTICE: Deprecated function pgr_vidsToDMatrix
pgr_vidstodmatrix

{{0,1,2,2},{1,0,1,1},{2,1,0,4},{2,1,4,0}}

(1 row)

SELECT * FROM pgr_vidsToDMatrix(
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table',
array[1,2,3,5],
true, true, true);

NOTICE: Deprecated function pgr_vidsToDMatrix
pgr_vidstodmatrix

{{0,1,2,2},{1,0,1,1},{2,1,0,2},{2,1,2,0}}

(1 row)

This example shows how this can be used in the context of feeding the results into pgr_tsp() function.

SELECT * FROM pgr_tsp(
(SELECT pgr_vidsToDMatrix(

'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table',
array[1,2,3,5],
true, true, true)

),
1

);
NOTICE: Deprecated function pgr_vidsToDMatrix
seq | id

-----+----
0 | 1
1 | 2
2 | 3
3 | 0

(4 rows)

This example uses the Sample Data network.

See Also

• pgr_vidsToDMatrix - Deprecated Function

• pgr_textToPoints - Deprecated Function

• pgr_tsp -Deprecated Signatures

Indices and tables

• genindex

• search

258 Chapter 8. Discontinued & Deprecated Functions

pgRouting Manual, Release 2.3.2 (master)

pgr_pointsToDMatrix - Deprecated Function

Warning: This function is deprecated!!!
• Is no longer supported.
• May be removed from future versions.
• There is no replacement.

Name pgr_pointsToDMatrix - Creates a distance matrix from an array of points.

Synopsis Create a distance symmetric distance matrix suitable for TSP using Euclidean distances based on the
st_distance(). You might want to create a variant of this the uses st_distance_sphere() or st_distance_spheriod() or
some other function.

The function returns:

• record - with two fields as describe here

– dmatrix float8[] - the distance matrix suitable to pass to pgrTSP() function.

– ids integer[] - an array of ids for the distance matrix.

record pgr_pointsToDMatrix(pnts geometry[], OUT dmatrix double precision[], OUT ids integer[])

Description

Parameters

pnts geometry[] - An array of point geometries.

Warning: The generated matrix will be symmetric as required for pgr_TSP.

History

• Proposed in version 2.1.0

Examples
SELECT * FROM pgr_pointstodmatrix(pgr_texttopoints('2,0;2,1;3,1;2,2', 0));
NOTICE: Deperecated function: pgr_textToPoints
NOTICE: Deprecated function pgr_pointsToDMatrix

dmatrix | ids
---+-----------
{{0,1,1.4142135623731,2},{1,0,1,1},{1.4142135623731,1,0,1.4142135623731},{2,1,1.4142135623731,0}} | {1,2,3,4}

(1 row)

This example shows how this can be used in the context of feeding the results into pgr_tsp() function.

SELECT * from pgr_tsp(
(SELECT dMatrix FROM pgr_pointstodmatrix(pgr_texttopoints('2,0;2,1;3,1;2,2', 0))
),
1

);
NOTICE: Deperecated function: pgr_textToPoints
NOTICE: Deprecated function pgr_pointsToDMatrix
seq | id

8.2. Deprecated Functions 259

pgRouting Manual, Release 2.3.2 (master)

-----+----
0 | 1
1 | 3
2 | 2
3 | 0

(4 rows)

See Also

• pgr_vidsToDMatrix - Deprecated Function

• pgr_vidsToDMatrix - Deprecated Function

• pgr_tsp -Deprecated Signatures

Indices and tables

• genindex

• search

pgr_textToPoints - Deprecated Function

Warning: This function is deprecated!!!
• Is no longer supported.
• May be removed from future versions.
• There is no replacement.

Name pgr_textToPoints - Converts a text string of the format “x,y;x,y;x,y;...” into and array of point
geometries.

Synopsis Given a text string of the format “x,y;x,y;x,y;...” and the srid to use, split the string and create and
array point geometries.

The function returns:

•

integer pgr_textToPoints(pnts text, srid integer DEFAULT(4326))

Description

Parameters

pnts text A text string of the format “x,y;x,y;x,y;...” where x is longitude and y is latitude if use
values in lat-lon.

srid integer The SRID to use when constructing the point geometry. If the paratmeter is absent it
defaults to SRID:4326.

History

• Proposed in version 2.1.0

260 Chapter 8. Discontinued & Deprecated Functions

pgRouting Manual, Release 2.3.2 (master)

Examples
SELECT ST_AsText(g) FROM

(SELECT unnest(pgr_texttopoints('2,0;2,1;3,1;2,2', 0)) AS g) AS foo;
NOTICE: Deperecated function: pgr_textToPoints
st_astext

POINT(2 0)
POINT(2 1)
POINT(3 1)
POINT(2 2)

(4 rows)

See Also

• pgr_pointToEdgeNode - Proposed

• pgr_pointsToVids - Proposed

Indices and tables

• genindex

• search

8.2.2 Deprecated on version 2.2

Routing functions

• pgr_apspJohnson - Deprecated function - Replaced with pgr_johnson

• pgr_apspWarshall - Deprecated Function - Replaced with pgr_floydWarshall

• pgr_kDijkstra - Deprecated Functions - Replaced with pgr_dijkstraCost and pgr_dijkstra (one to many)

pgr_apspJohnson - Deprecated function

Warning: This function is deprecated!!!
• It has been replaced by a new functions, is no longer supported, and may be removed from future

versions.
• All code that uses this function should be converted to use its replacement: pgr_johnson.

Name pgr_apspJohnson - Returns all costs for each pair of nodes in the graph.

Synopsis Johnson’s algorithm is a way to find the shortest paths between all pairs of vertices in a sparse, edge
weighted, directed graph. Returns a set of pgr_costResult (seq, id1, id2, cost) rows for every pair of nodes in the
graph.

pgr_costResult[] pgr_apspJohnson(sql text);

8.2. Deprecated Functions 261

pgRouting Manual, Release 2.3.2 (master)

Description

sql a SQL query that should return the edges for the graph that will be analyzed:

SELECT source, target, cost FROM edge_table;

source int4 identifier of the source vertex for this edge

target int4 identifier of the target vertex for this edge

cost float8 a positive value for the cost to traverse this edge

Returns set of pgr_costResult[]:

seq row sequence

id1 source node ID

id2 target node ID

cost cost to traverse from id1 to id2

History

• Deprecated in version 2.2.0

• New in version 2.0.0

Examples
SELECT * FROM pgr_apspJohnson(

'SELECT source::INTEGER, target::INTEGER, cost FROM edge_table WHERE id < 5'
);

NOTICE: Deprecated function: Use pgr_johnson instead
seq | id1 | id2 | cost

-----+-----+-----+------
0 | 1 | 2 | 1
1 | 1 | 5 | 2
2 | 2 | 5 | 1

(3 rows)

The query uses the Sample Data network.

See Also

• pgr_costResult[]

• pgr_johnson

• http://en.wikipedia.org/wiki/Johnson%27s_algorithm

pgr_apspWarshall - Deprecated Function

Warning: This function is deprecated!!!
• It has been replaced by a new function, is no longer supported, and may be removed from future versions.
• All code that uses this function should be converted to use its replacement: pgr_floydWarshall.

Name pgr_apspWarshall - Returns all costs for each pair of nodes in the graph.

262 Chapter 8. Discontinued & Deprecated Functions

http://en.wikipedia.org/wiki/Johnson%27s_algorithm

pgRouting Manual, Release 2.3.2 (master)

Synopsis The Floyd-Warshall algorithm (also known as Floyd’s algorithm and other names) is a graph analysis
algorithm for finding the shortest paths between all pairs of nodes in a weighted graph. Returns a set of pgr_-
costResult (seq, id1, id2, cost) rows for every pair of nodes in the graph.

pgr_costResult[] pgr_apspWarshall(sql text, directed boolean, reverse_cost boolean);

Description

sql a SQL query that should return the edges for the graph that will be analyzed:

SELECT id, source, target, cost FROM edge_table;

id int4 identifier of the edge

source int4 identifier of the source vertex for this edge

target int4 identifier of the target vertex for this edge

cost float8 a positive value for the cost to traverse this edge

reverse_cost float8 (optional) a positive value for the reverse cost to traverse this
edge

directed true if the graph is directed

has_rcost if true, the reverse_cost column of the SQL generated set of rows will be used for
the cost of the traversal of the edge in the opposite direction.

Returns set of pgr_costResult[]:

seq row sequence

id1 source node ID

id2 target node ID

cost cost to traverse from id1 to id2

History

• Deprecated in version 2.0.0

• New in version 2.0.0

Examples
SELECT * FROM pgr_apspWarshall(

'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table WHERE id < 5',
false, false

);
NOTICE: Deprecated function: Use pgr_floydWarshall instead
seq | id1 | id2 | cost

-----+-----+-----+------
0 | 1 | 2 | 1
1 | 1 | 5 | 2
2 | 2 | 1 | 1
3 | 2 | 5 | 1
4 | 5 | 1 | 2
5 | 5 | 2 | 1

(6 rows)

The query uses the Sample Data network.

8.2. Deprecated Functions 263

pgRouting Manual, Release 2.3.2 (master)

See Also

• pgr_costResult[]

• pgr_floydWarshall

• http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm

pgr_kDijkstra - Deprecated Functions

Warning: These functions are deprecated!!!
• It has been replaced by a new functions, are no longer supported, and may be removed from future

versions.
• All code that uses the functions should be converted to use its replacement.

Name

• pgr_kdijkstraCost - Returns the costs for K shortest paths using Dijkstra algorithm.

Warning: Use pgr_dijkstraCost (One To Many) instead.

• pgr_kdijkstraPath - Returns the paths for K shortest paths using Dijkstra algorithm.

Warning: Use pgr_dijkstra (One To Many) instead.

Synopsis These functions allow you to have a single start node and multiple destination nodes and will compute
the routes to all the destinations from the source node. Returns a set of pgr_costResult or pgr_costResult3. pgr_-
kdijkstraCost returns one record for each destination node and the cost is the total code of the route to that
node. pgr_kdijkstraPath returns one record for every edge in that path from source to destination and the
cost is to traverse that edge.

pgr_costResult[] pgr_kdijkstraCost(text sql, integer source,
integer[] targets, boolean directed, boolean has_rcost);

pgr_costResult3[] pgr_kdijkstraPath(text sql, integer source,
integer[] targets, boolean directed, boolean has_rcost);

Description

sql a SQL query, which should return a set of rows with the following columns:

SELECT id, source, target, cost [,reverse_cost] FROM edge_table

id int4 identifier of the edge

source int4 identifier of the source vertex

target int4 identifier of the target vertex

cost float8 value, of the edge traversal cost. A negative cost will prevent the edge
from being inserted in the graph.

reverse_cost (optional) the cost for the reverse traversal of the edge. This is only
used when the directed and has_rcost parameters are true (see the above
remark about negative costs).

source int4 id of the start point

targets int4[] an array of ids of the end points

264 Chapter 8. Discontinued & Deprecated Functions

http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm

pgRouting Manual, Release 2.3.2 (master)

directed true if the graph is directed

has_rcost if true, the reverse_cost column of the SQL generated set of rows will be used for
the cost of the traversal of the edge in the opposite direction.

pgr_kdijkstraCost returns set of pgr_costResult[]:

seq row sequence

id1 path vertex source id (this will always be source start point in the query).

id2 path vertex target id

cost cost to traverse the path from id1 to id2. Cost will be -1.0 if there is no path to that target
vertex id.

pgr_kdijkstraPath returns set of pgr_costResult3[] - Multiple Path Results with Cost:

seq row sequence

id1 path target id (identifies the target path).

id2 path edge source node id

id3 path edge id (-1 for the last row)

cost cost to traverse this edge or -1.0 if there is no path to this target

History

• Deprecated in version 2.0.0

• New in version 2.0.0

Examples

• Returning a cost result

SELECT * FROM pgr_kdijkstraCost(
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table',
10, array[4,12], false, false);

NOTICE: Deprecated function. Use pgr_dijkstraCost instead.
seq | id1 | id2 | cost

-----+-----+-----+------
0 | 10 | 4 | 4
1 | 10 | 12 | 2

(2 rows)

SELECT * FROM pgr_kdijkstraPath(
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table',
10, array[4,12], false, false);

NOTICE: Deprecated function: Use pgr_dijkstra instead.
seq | id1 | id2 | id3 | cost

-----+-----+-----+-----+------
0 | 4 | 10 | 12 | 1
1 | 4 | 11 | 13 | 1
2 | 4 | 12 | 15 | 1
3 | 4 | 9 | 16 | 1
4 | 4 | 4 | -1 | 0
5 | 12 | 10 | 12 | 1
6 | 12 | 11 | 13 | 1
7 | 12 | 12 | -1 | 0

(8 rows)

8.2. Deprecated Functions 265

pgRouting Manual, Release 2.3.2 (master)

• Returning a path result

SELECT id1 AS path, st_AStext(st_linemerge(st_union(b.the_geom))) AS the_geom
FROM pgr_kdijkstraPath(

'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table',
10, array[4,12], false, false

) a,
edge_table b

WHERE a.id3=b.id
GROUP by id1
ORDER by id1;
NOTICE: Deprecated function: Use pgr_dijkstra instead.
path | the_geom

------+---------------------------------
4 | LINESTRING(2 3,3 3,4 3,4 2,4 1)

12 | LINESTRING(2 3,3 3,4 3)
(2 rows)

There is no assurance that the result above will be ordered in the direction of flow of the route, ie: it might be
reversed. You will need to check if st_startPoint() of the route is the same as the start node location and
if it is not then call st_reverse() to reverse the direction of the route. This behavior is a function of PostGIS
functions st_linemerge() and st_union() and not pgRouting.

See Also

• pgr_dijkstraCost, pgr_dijkstra

• pgr_costResult[]

• http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

8.2.3 Deprecated on version 2.1

Routing functions

• pgr_dijkstra - Deprecated Signature - See new signature in pgr_dijkstra (one to one)

• pgr_ksp - Deprecated Signature - See new signature in pgr_ksp

• pgr_drivingDistance - Deprecated Signature - See new signature in pgr_drivingDistance

Auxiliary functions

• pgr_getColumnName - Deprecated Function

• pgr_getTableName - Deprecated Function

• pgr_isColumnIndexed - Deprecated Function

• pgr_isColumnInTable - Deprecated Function

• pgr_quote_ident - Deprecated Function

• pgr_versionless - Deprecated Function

• pgr_startPoint - Deprecated Function

• pgr_endPoint - Deprecated Function

266 Chapter 8. Discontinued & Deprecated Functions

http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

pgRouting Manual, Release 2.3.2 (master)

pgr_dijkstra - Deprecated Signature

Warning: This function signature is deprecated!!!
• That means it has been replaced by new signature(s)
• This signature is no longer supported, and may be removed from future versions.
• All code that use this function signature should be converted to use its replacement pgr_dijkstra (One to

One).

Name pgr_dijkstra — Returns the shortest path using Dijkstra algorithm.

Synopsis Dijkstra’s algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956. It is a graph
search algorithm that solves the single-source shortest path problem for a graph with non-negative edge path
costs, producing a shortest path tree. Returns a set of pgr_costResult (seq, id1, id2, cost) rows, that make up a
path.

pgr_costResult[] pgr_dijkstra(text sql, integer source, integer target,
boolean directed, boolean has_rcost);

Description

sql a SQL query, which should return a set of rows with the following columns:

SELECT id, source, target, cost [,reverse_cost] FROM edge_table

id int4 identifier of the edge

source int4 identifier of the source vertex

target int4 identifier of the target vertex

cost float8 value, of the edge traversal cost. A negative cost will prevent the edge
from being inserted in the graph.

reverse_cost float8 (optional) the cost for the reverse traversal of the edge. This is
only used when the directed and has_rcost parameters are true (see the
above remark about negative costs).

source int4 id of the start point

target int4 id of the end point

directed true if the graph is directed

has_rcost if true, the reverse_cost column of the SQL generated set of rows will be used for
the cost of the traversal of the edge in the opposite direction.

Returns set of pgr_costResult[]:

seq row sequence

id1 node ID

id2 edge ID (-1 for the last row)

cost cost to traverse from id1 using id2

History

• Renamed in version 2.0.0

8.2. Deprecated Functions 267

pgRouting Manual, Release 2.3.2 (master)

Examples: Directed

• Without reverse_cost

SELECT * FROM pgr_dijkstra(
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table',
2,3, true, false);

NOTICE: Deprecated function
seq | id1 | id2 | cost

-----+-----+-----+------
(0 rows)

• With reverse_cost

SELECT * FROM pgr_dijkstra(
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table',
2,3, true, true);

NOTICE: Deprecated function
seq | id1 | id2 | cost

-----+-----+-----+------
0 | 2 | 4 | 1
1 | 5 | 8 | 1
2 | 6 | 9 | 1
3 | 9 | 16 | 1
4 | 4 | 3 | 1
5 | 3 | -1 | 0

(6 rows)

Examples: Undirected

• Without reverse_cost

SELECT * FROM pgr_dijkstra(
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table',
2, 3, false, false);

NOTICE: Deprecated function
seq | id1 | id2 | cost

-----+-----+-----+------
0 | 2 | 4 | 1
1 | 5 | 8 | 1
2 | 6 | 5 | 1
3 | 3 | -1 | 0

(4 rows)

• With reverse_cost

SELECT * FROM pgr_dijkstra(
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table',
2, 3, false, true);

NOTICE: Deprecated function
seq | id1 | id2 | cost

-----+-----+-----+------
0 | 2 | 2 | 1
1 | 3 | -1 | 0

(2 rows)

The queries use the Sample Data network.

See Also

268 Chapter 8. Discontinued & Deprecated Functions

pgRouting Manual, Release 2.3.2 (master)

• Dijkstra - Family of functions, pgr_dijkstra

• pgr_costResult[]

• http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

pgr_ksp - Deprecated Signature

Warning: This function signature is deprecated!!!
• That means it has been replaced by new signature(s)
• This signature is no longer supported, and may be removed from future versions.
• All code that use this function signature should be converted to use its replacement pgr_ksp.

Name pgr_ksp — Returns the “K” shortest paths.

Synopsis The K shortest path routing algorithm based on Yen’s algorithm. “K” is the number of shortest paths
desired. Returns a set of pgr_costResult3 (seq, id1, id2, id3, cost) rows, that make up a path.

pgr_costResult3[] pgr_ksp(sql text, source integer, target integer,
paths integer, has_rcost boolean);

Description

sql a SQL query, which should return a set of rows with the following columns:

SELECT id, source, target, cost, [,reverse_cost] FROM edge_table

id int4 identifier of the edge

source int4 identifier of the source vertex

target int4 identifier of the target vertex

cost float8 value, of the edge traversal cost. A negative cost will prevent the edge
from being inserted in the graph.

reverse_cost (optional) the cost for the reverse traversal of the edge. This is only used
when has_rcost the parameter is true (see the above remark about negative
costs).

source int4 id of the start point

target int4 id of the end point

paths int4 number of alternative routes

has_rcost if true, the reverse_cost column of the SQL generated set of rows will be used for
the cost of the traversal of the edge in the opposite direction.

Returns set of pgr_costResult[]:

seq sequence for ording the results

id1 route ID

id2 node ID

id3 edge ID (0 for the last row)

cost cost to traverse from id2 using id3

KSP code base taken from http://code.google.com/p/k-shortest-paths/source.

8.2. Deprecated Functions 269

http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://code.google.com/p/k-shortest-paths/source

pgRouting Manual, Release 2.3.2 (master)

History

• New in version 2.0.0

Examples

• Without reverse_cost

SELECT * FROM pgr_ksp(
'SELECT id, source, target, cost FROM edge_table order by id',
7, 12, 2, false

);
NOTICE: Deprecated function
seq | id1 | id2 | id3 | cost

-----+-----+-----+-----+------
0 | 0 | 7 | 6 | 1
1 | 0 | 8 | 7 | 1
2 | 0 | 5 | 8 | 1
3 | 0 | 6 | 9 | 1
4 | 0 | 9 | 15 | 1
5 | 0 | 12 | -1 | 0
6 | 1 | 7 | 6 | 1
7 | 1 | 8 | 7 | 1
8 | 1 | 5 | 8 | 1
9 | 1 | 6 | 11 | 1
10 | 1 | 11 | 13 | 1
11 | 1 | 12 | -1 | 0

(12 rows)

• With reverse_cost

SELECT * FROM pgr_ksp(
'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
7, 12, 2, true

);
NOTICE: Deprecated function
seq | id1 | id2 | id3 | cost

-----+-----+-----+-----+------
0 | 0 | 7 | 6 | 1
1 | 0 | 8 | 7 | 1
2 | 0 | 5 | 8 | 1
3 | 0 | 6 | 9 | 1
4 | 0 | 9 | 15 | 1
5 | 0 | 12 | -1 | 0
6 | 1 | 7 | 6 | 1
7 | 1 | 8 | 7 | 1
8 | 1 | 5 | 8 | 1
9 | 1 | 6 | 11 | 1
10 | 1 | 11 | 13 | 1
11 | 1 | 12 | -1 | 0

(12 rows)

The queries use the Sample Data network.

See Also

• pgr_ksp

• pgr_costResult3[] - Multiple Path Results with Cost

• http://en.wikipedia.org/wiki/K_shortest_path_routing

270 Chapter 8. Discontinued & Deprecated Functions

http://en.wikipedia.org/wiki/K_shortest_path_routing

pgRouting Manual, Release 2.3.2 (master)

pgr_drivingDistance - Deprecated Signature

Warning: This function signature is deprecated!!!
• That means it has been replaced by new signature(s)
• This signature is no longer supported, and may be removed from future versions.
• All code that use this function signature should be converted to use its replacement pgr_drivingDistance.

Name pgr_drivingDistance - Returns the driving distance from a start node.

Synopsis This function computes a Dijkstra shortest path solution them extracts the cost to get to each node
in the network from the starting node. Using these nodes and costs it is possible to compute constant drive time
polygons. Returns a set of pgr_costResult (seq, id1, id2, cost) rows, that make up a list of accessible points.

pgr_costResult[] pgr_drivingDistance(text sql, integer source, double precision distance,
boolean directed, boolean has_rcost);

Description

sql a SQL query, which should return a set of rows with the following columns:

SELECT id, source, target, cost [,reverse_cost] FROM edge_table

id int4 identifier of the edge

source int4 identifier of the source vertex

target int4 identifier of the target vertex

cost float8 value, of the edge traversal cost. A negative cost will prevent the edge
from being inserted in the graph.

reverse_cost (optional) the cost for the reverse traversal of the edge. This is only
used when the directed and has_rcost parameters are true (see the above
remark about negative costs).

source int4 id of the start point

distance float8 value in edge cost units (not in projection units - they might be different).

directed true if the graph is directed

has_rcost if true, the reverse_cost column of the SQL generated set of rows will be used for
the cost of the traversal of the edge in the opposite direction.

Returns set of pgr_costResult[]:

seq row sequence

id1 node ID

id2 edge ID (this is probably not a useful item)

cost cost to get to this node ID

Warning: You must reconnect to the database after CREATE EXTENSION pgrouting. Otherwise the
function will return Error computing path: std::bad_alloc.

History

• Renamed in version 2.0.0

8.2. Deprecated Functions 271

pgRouting Manual, Release 2.3.2 (master)

Examples

• Without reverse_cost

• With reverse_cost

SELECT * FROM pgr_drivingDistance(
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table',
7, 1.5, false, false

) ;
NOTICE: Deprecated function
seq | id1 | id2 | cost

-----+-----+-----+------
0 | 7 | -1 | 0
1 | 8 | 6 | 1

(2 rows)

SELECT * FROM pgr_drivingDistance(
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table',
7, 1.5, true, true

) ;
NOTICE: Deprecated function
seq | id1 | id2 | cost

-----+-----+-----+------
0 | 7 | -1 | 0
1 | 8 | 6 | 1

(2 rows)

The queries use the Sample Data network.

See Also

• pgr_drivingDistance

• pgr_alphaShape - Alpha shape computation

• pgr_pointsAsPolygon - Polygon around set of points

pgr_getColumnName - Deprecated Function

Warning: This function is deprecated!!!
• Is no longer supported.
• May be removed from future versions.
• There is no replacement.

Name pgr_getColumnName — Retrieves the name of the column as is stored in the postgres administration
tables.

Note: This function is intended for the developer’s aid.

Synopsis Returns a text contining the registered name of the column.

text pgr_getColumnName(tab text, col text);

Description Parameters

tab text table name with or without schema component.

272 Chapter 8. Discontinued & Deprecated Functions

pgRouting Manual, Release 2.3.2 (master)

col text column name to be retrieved.

Returns

• text containing the registered name of the column.

• NULL when :

– The table “tab” is not found or

– Column “col” is not found in table “tab” in the postgres administration tables.

History

• New in version 2.0.0

Examples
SELECT pgr_getColumnName('edge_table','the_geom');

pgr_iscolumnintable

the_geom

(1 row)

SELECT pgr_getColumnName('edge_table','The_Geom');

pgr_iscolumnintable

the_geom

(1 row)

The queries use the Sample Data network.

See Also

• Developer’s Guide for the tree layout of the project.

• pgr_isColumnInTable - Deprecated Function to check only for the existence of the column.

• pgr_getTableName - Deprecated Function to retrieve the name of the table as is stored in the postgres
administration tables.

pgr_getTableName - Deprecated Function

Warning: This function is deprecated!!!
• Is no longer supported.
• May be removed from future versions.
• There is no replacement.

Name pgr_getTableName — Retrieves the name of the column as is stored in the postgres administration
tables.

Note: This function is intended for the developer’s aid.

8.2. Deprecated Functions 273

pgRouting Manual, Release 2.3.2 (master)

Synopsis Returns a record containing the registered names of the table and of the schema it belongs to.

(text sname, text tname) pgr_getTableName(text tab)

Description Parameters

tab text table name with or without schema component.

Returns

sname

• text containing the registered name of the schema of table “tab”.

– when the schema was not provided in “tab” the current schema is used.

• NULL when :

– The schema is not found in the postgres administration tables.

tname

• text containing the registered name of the table “tab”.

• NULL when :

– The schema is not found in the postgres administration tables.

– The table “tab” is not registered under the schema sname in the postgres administra-
tion tables

History

• New in version 2.0.0

Examples
SELECT * from pgr_getTableName('edge_table');

sname | tname
--------+------------
public | edge_table

(1 row)

SELECT * from pgr_getTableName('EdgeTable');

sname | tname
--------+------------
public |

(1 row)

SELECT * from pgr_getTableName('data.Edge_Table');
sname | tname

-------+-------
|

(1 row)

The examples use the Sample Data network.

See Also

• Developer’s Guide for the tree layout of the project.

• pgr_isColumnInTable - Deprecated Function to check only for the existence of the column.

274 Chapter 8. Discontinued & Deprecated Functions

pgRouting Manual, Release 2.3.2 (master)

• pgr_getTableName - Deprecated Function to retrieve the name of the table as is stored in the postgres
administration tables.

pgr_isColumnIndexed - Deprecated Function

Warning: This function is deprecated!!!
• Is no longer supported.
• May be removed from future versions.
• There is no replacement.

Name pgr_isColumnIndexed — Check if a column in a table is indexed.

Note: This function is intended for the developer’s aid.

Synopsis Returns true when the column “col” in table “tab” is indexed.

boolean pgr_isColumnIndexed(text tab, text col);

Description

tab text Table name with or without schema component.

col text Column name to be checked for.

Returns:

• true when the column “col” in table “tab” is indexed.

• false when:

• The table “tab” is not found or

• Column “col” is not found in table “tab” or

• Column “col” in table “tab” is not indexed

History

• New in version 2.0.0

Examples
SELECT pgr_isColumnIndexed('edge_table','x1');

pgr_iscolumnindexed

f

(1 row)

SELECT pgr_isColumnIndexed('public.edge_table','cost');

pgr_iscolumnindexed

f

(1 row)

The example use the Sample Data network.

8.2. Deprecated Functions 275

pgRouting Manual, Release 2.3.2 (master)

See Also

• Developer’s Guide for the tree layout of the project.

• pgr_isColumnInTable - Deprecated Function to check only for the existence of the column in the table.

• pgr_getColumnName - Deprecated Function to get the name of the column as is stored in the postgres
administration tables.

• pgr_getTableName - Deprecated Function to get the name of the table as is stored in the postgres adminis-
tration tables.

pgr_isColumnInTable - Deprecated Function

Warning: This function is deprecated!!!
• Is no longer supported.
• May be removed from future versions.
• There is no replacement.

Name pgr_isColumnInTable — Check if a column is in the table.

Note: This function is intended for the developer’s aid.

Synopsis Returns true when the column “col” is in table “tab”.

boolean pgr_isColumnInTable(text tab, text col);

Description

tab text Table name with or without schema component.

col text Column name to be checked for.

Returns:

• true when the column “col” is in table “tab”.

• false when:

• The table “tab” is not found or

• Column “col” is not found in table “tab”

History

• New in version 2.0.0

Examples
SELECT pgr_isColumnInTable('edge_table','x1');

pgr_iscolumnintable

t

(1 row)

SELECT pgr_isColumnInTable('public.edge_table','foo');

pgr_iscolumnintable

276 Chapter 8. Discontinued & Deprecated Functions

pgRouting Manual, Release 2.3.2 (master)

f

(1 row)

The example use the Sample Data network.

See Also

• Developer’s Guide for the tree layout of the project.

• pgr_isColumnIndexed - Deprecated Function to check if the column is indexed.

• pgr_getColumnName - Deprecated Function to get the name of the column as is stored in the postgres
administration tables.

• pgr_getTableName - Deprecated Function to get the name of the table as is stored in the postgres adminis-
tration tables.

pgr_pointToId - Deprecated Function

Warning: This function is deprecated!!!
• Is no longer supported.
• May be removed from future versions.
• There is no replacement.

Name pgr_pointToId — Inserts a point into a vertices table and returns the corresponig id.

Note: This function is intended for the developer’s aid.

Synopsis This function returns the id of the row in the vertices table that corresponds to the point geometry

bigint pgr_pointToId(geometry point, double precision tolerance,text vertname text,integer srid)

Description

point geometry “POINT” geometry to be inserted.

tolerance float8 Snapping tolerance of disconnected edges. (in projection unit)

vertname text Vertices table name WITH schema included.

srid integer SRID of the geometry point.

This function returns the id of the row that corresponds to the point geometry

• When the point geometry already exists in the vertices table vertname, it returns the corresponding id.

• When the point geometry is not found in the vertices table vertname, the function inserts the point
and returns the corresponding id of the newly created vertex.

Warning: The function do not perform any checking of the parameters. Any validation has to be done before
calling this function.

History

• Renamed in version 2.0.0

8.2. Deprecated Functions 277

pgRouting Manual, Release 2.3.2 (master)

See Also

• Developer’s Guide for the tree layout of the project.

• pgr_createVerticesTable to create a topology based on the geometry.

• pgr_createTopology to create a topology based on the geometry.

pgr_quote_ident - Deprecated Function

Warning: This function is deprecated!!!
• Is no longer supported.
• May be removed from future versions.
• There is no replacement.

Name pgr_quote_ident — Quotes the input text to be used as an identifier in an SQL statement string.

Note: This function is intended for the developer’s aid.

Synopsis Returns the given identifier idname suitably quoted to be used as an identifier in an SQL statement
string.

text pgr_quote_ident(text idname);

Description

Parameters

idname text Name of an SQL identifier. Can include . dot notation for schemas.table identifiers

Returns the given string suitably quoted to be used as an identifier in an SQL statement string.

• When the identifier idname contains on or more . separators, each component is suitably quoted to be
used in an SQL string.

History

• New in version 2.0.0

Examples Everything is lower case so nothing needs to be quoted.

SELECT pgr_quote_ident('the_geom');

pgr_quote_ident

the_geom
(1 row)

SELECT pgr_quote_ident('public.edge_table');

pgr_quote_ident

public.edge_table

(1 row)

278 Chapter 8. Discontinued & Deprecated Functions

pgRouting Manual, Release 2.3.2 (master)

The column is upper case so its double quoted.

SELECT pgr_quote_ident('edge_table.MYGEOM');

pgr_quote_ident

edge_table."MYGEOM"

(1 row)

SELECT pgr_quote_ident('public.edge_table.MYGEOM');

pgr_quote_ident

public.edge_table."MYGEOM"

(1 row)

The schema name has a capital letter so its double quoted.

SELECT pgr_quote_ident('Myschema.edge_table');

pgr_quote_ident

"Myschema".edge_table

(1 row)

Ignores extra . separators.

SELECT pgr_quote_ident('Myschema...edge_table');

pgr_quote_ident

"Myschema".edge_table

(1 row)

See Also

• Developer’s Guide for the tree layout of the project.

• pgr_getTableName - Deprecated Function to get the name of the table as is stored in the postgres adminis-
tration tables.

pgr_versionless - Deprecated Function

Warning: This function is deprecated!!!
• Is no longer supported.
• May be removed from future versions.
• There is no replacement.

Name pgr_versionless — Compare two version numbers.

Note: This function is intended for the developer’s aid.

Synopsis Returns true if the first version number is smaller than the second version number. Otherwise returns
false.

boolean pgr_versionless(text v1, text v2);

8.2. Deprecated Functions 279

pgRouting Manual, Release 2.3.2 (master)

Description

v1 text first version number

v2 text second version number

History

• New in version 2.0.0

Examples
SELECT pgr_versionless('2.0.1', '2.1');

pgr_versionless

t

(1 row)

See Also

• Developer’s Guide for the tree layout of the project.

• pgr_version to get the current version of pgRouting.

pgr_startPoint - Deprecated Function

Warning: This function is deprecated!!!
• Is no longer supported.
• May be removed from future versions.
• There is no replacement.

Name pgr_startPoint — Returns a start point of a (multi)linestring geometry.

Note: This function is intended for the developer’s aid.

Synopsis Returns the geometry of the start point of the first LINESTRING of geom.

geometry pgr_startPoint(geometry geom);

Description

Parameters

geom geometry Geometry of a MULTILINESTRING or LINESTRING.

Returns the geometry of the start point of the first LINESTRING of geom.

History

• New in version 2.0.0

280 Chapter 8. Discontinued & Deprecated Functions

pgRouting Manual, Release 2.3.2 (master)

See Also

• Developer’s Guide for the tree layout of the project.

• pgr_endPoint - Deprecated Function to get the end point of a (multi)linestring.

pgr_endPoint - Deprecated Function

Warning: This function is deprecated!!!
• Is no longer supported.
• May be removed from future versions.
• There is no replacement.

Name pgr_endPoint — Returns an end point of a (multi)linestring geometry.

Note: This function is intended for the developer’s aid.

Synopsis Returns the geometry of the end point of the first LINESTRING of geom.

text pgr_startPoint(geometry geom);

Description

Parameters

geom geometry Geometry of a MULTILINESTRING or LINESTRING.

Returns the geometry of the end point of the first LINESTRING of geom.

History

• New in version 2.0.0

See Also

• Developer’s Guide for the tree layout of the project.

• pgr_startPoint - Deprecated Function to get the start point of a (multi)linestring.

8.2. Deprecated Functions 281

pgRouting Manual, Release 2.3.2 (master)

282 Chapter 8. Discontinued & Deprecated Functions

CHAPTER 9

Change Log

Release Notes

• pgRouting 2.3.2 Release Notes

• pgRouting 2.3.1 Release Notes

• pgRouting 2.3.0 Release Notes

• pgRouting 2.2.4 Release Notes

• pgRouting 2.2.3 Release Notes

• pgRouting 2.2.2 Release Notes

• pgRouting 2.2.1 Release Notes

• pgRouting 2.2.0 Release Notes

• pgRouting 2.1.0 Release Notes

• pgRouting 2.0.1 Release Notes

• pgRouting 2.0.0 Release Notes

• pgRouting 1.x Release Notes

9.1 Release Notes

To see the full list of changes check the list of Git commits1 on Github.

9.1.1 Table of contents

• pgRouting 2.3.2 Release Notes

• pgRouting 2.3.1 Release Notes

• pgRouting 2.3.0 Release Notes

• pgRouting 2.2.4 Release Notes

• pgRouting 2.2.3 Release Notes

• pgRouting 2.2.2 Release Notes

• pgRouting 2.2.1 Release Notes

• pgRouting 2.2.0 Release Notes

• pgRouting 2.1.0 Release Notes

1https://github.com/pgRouting/pgrouting/commits

283

https://github.com/pgRouting/pgrouting/commits

pgRouting Manual, Release 2.3.2 (master)

• pgRouting 2.0.1 Release Notes

• pgRouting 2.0.0 Release Notes

• pgRouting 1.x Release Notes

9.2 pgRouting 2.3.2 Release Notes

To see the issues closed by this release see the Git closed issues for 2.3.22 on Github.

Bug Fixes

• Fixed pgr_gsoc_vrppdtw crash when all orders fit on one truck.

• Fixed pgr_trsp:

– Alternate code is not executed when the point is in reality a vertex

– Fixed ambiguity on seq

9.3 pgRouting 2.3.1 Release Notes

To see the issues closed by this release see the Git closed issues for 2.3.13 on Github.

Bug Fixes

• Leaks on proposed max_flow functions

• Regression error on pgr_trsp

• Types discrepancy on pgr_createVerticesTable

9.4 pgRouting 2.3.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.3.04 on Github.

New Signatures

Indentifiers can be ANY-INTEGER and costs can be ANY-NUMERICAL

• pgr_TSP

• pgr_aStar

New Functions

• pgr_eucledianTSP

2https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.3.2%22+is%3Aclosed
3https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.3.1%22+is%3Aclosed
4https://github.com/pgRouting/pgrouting/issues?q=is%3Aissue+milestone%3A%22Release+2.3.0%22+is%3Aclosed

284 Chapter 9. Change Log

https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.3.2%22+is%3Aclosed
https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.3.1%22+is%3Aclosed
https://github.com/pgRouting/pgrouting/issues?q=is%3Aissue+milestone%3A%22Release+2.3.0%22+is%3Aclosed

pgRouting Manual, Release 2.3.2 (master)

New Proposed functions

• pgr_dijkstraCostMatrix

• pgr_withPointsCostMatrix

• pgr_maxFlowPushRelabel

• pgr_maxFlowEdmondsKarp

• pgr_maxFlowBoykovKolmogorov

• pgr_maximumCardinalityMatching

• pgr_edgeDisjointPaths

• pgr_contractGraph

Deprecated Signatures

• pgr_tsp - use pgr_TSP or pgr_eucledianTSP instead

• pgr_astar - use pgr_aStar instead

Deprecated Functions

• pgr_flip_edges

• pgr_vidsToDmatrix

• pgr_pointsToDMatrix

• pgr_textToPoints

9.5 pgRouting 2.2.4 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.45 on Github.

Bug Fixes

• Bogus uses of extern “C”

• Build error on Fedora 24 + GCC 6.0

• Regression error pgr_nodeNetwork

9.6 pgRouting 2.2.3 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.36 on Github.

Bug Fixes

• Fixed compatibility issues with PostgreSQL 9.6.

5https://github.com/pgRouting/pgrouting/issues?q=is%3Aissue+milestone%3A%22Release+2.2.4%22+is%3Aclosed
6https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.2.3%22+is%3Aclosed

9.5. pgRouting 2.2.4 Release Notes 285

https://github.com/pgRouting/pgrouting/issues?q=is%3Aissue+milestone%3A%22Release+2.2.4%22+is%3Aclosed
https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.2.3%22+is%3Aclosed

pgRouting Manual, Release 2.3.2 (master)

9.7 pgRouting 2.2.2 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.27 on Github.

Bug Fixes

• Fixed regression error on pgr_drivingDistance

9.8 pgRouting 2.2.1 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.18 on Github.

Bug Fixes

• Server crash fix on pgr_alphaShape

• Bug fix on With Points family of functions

9.9 pgRouting 2.2.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.09 on Github.

Improvements

• pgr_nodeNetwork

– Adding a row_where and outall optional parameters

• Signature fix

– pgr_dijkstra – to match what is documented

New Functions

• pgr_floydWarshall

• pgr_Johnson

• pgr_DijkstraCost

Proposed functionality

• pgr_withPoints

• pgr_withPointsCost

• pgr_withPointsDD

• pgr_withPointsKSP

• pgr_dijkstraVia

7https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.2.2%22+is%3Aclosed
8https://github.com/pgRouting/pgrouting/issues?q=milestone%3A2.2.1+is%3Aclosed
9https://github.com/pgRouting/pgrouting/issues?utf8=%E2%9C%93&q=is%3Aissue+milestone%3A%22Release+2.2.0%22+is%3Aclosed

286 Chapter 9. Change Log

https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.2.2%22+is%3Aclosed
https://github.com/pgRouting/pgrouting/issues?q=milestone%3A2.2.1+is%3Aclosed
https://github.com/pgRouting/pgrouting/issues?utf8=%E2%9C%93&q=is%3Aissue+milestone%3A%22Release+2.2.0%22+is%3Aclosed

pgRouting Manual, Release 2.3.2 (master)

Deprecated functions:

• pgr_apspWarshall use pgr_floydWarshall instead

• pgr_apspJohnson use pgr_Johnson instead

• pgr_kDijkstraCost use pgr_dijkstraCost instead

• pgr_kDijkstraPath use pgr_dijkstra instead

9.10 pgRouting 2.1.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.1.010 on Github.

Refactored

• pgr_dijkstra

• pgr_ksp

• pgr_drivingDistance

Improvements

• Alphashape function now can generate better (multi)polygon with holes and alpha parameter.

Proposed functionality

• Proposed functions from Steve Woodbridge, (Classified as Convenience by the author.)

– pgr_pointToEdgeNode - convert a point geometry to a vertex_id based on closest edge.

– pgr_flipEdges - flip the edges in an array of geometries so the connect end to end.

– pgr_textToPoints - convert a string of x,y;x,y;... locations into point geometries.

– pgr_pointsToVids - convert an array of point geometries into vertex ids.

– pgr_pointsToDMatrix - Create a distance matrix from an array of points.

– pgr_vidsToDMatrix - Create a distance matrix from an array of vertix_id.

– pgr_vidsToDMatrix - Create a distance matrix from an array of vertix_id.

• Added proposed functions from GSoc Projects:

– pgr_vrppdtw

No longer supported

• Removed the 1.x legacy functions

Bug Fixes

• Some bug fixes in other functions

10https://github.com/pgRouting/pgrouting/issues?q=is%3Aissue+milestone%3A%22Release+2.1.0%22+is%3Aclosed

9.10. pgRouting 2.1.0 Release Notes 287

https://github.com/pgRouting/pgrouting/issues?q=is%3Aissue+milestone%3A%22Release+2.1.0%22+is%3Aclosed

pgRouting Manual, Release 2.3.2 (master)

Refactoring Internal Code

• A C and C++ library for developer was created

– encapsulates postgreSQL related functions

– encapsulates Boost.Graph graphs

* Directed Boost.Graph

* Undirected Boost.graph.

– allow any-integer in the id’s

– allow any-numerical on the cost/reverse_cost columns

• Instead of generating many libraries: - All functions are encapsulated in one library - The library has a the
prefix 2-1-0

9.11 pgRouting 2.0.1 Release Notes

Minor bug fixes.

Bug Fixes

• No track of the bug fixes were kept.

9.12 pgRouting 2.0.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.0.011 on Github.

With the release of pgRouting 2.0.0 the library has abandoned backwards compatibility to pgRouting 1.x releases.
The main Goals for this release are:

• Major restructuring of pgRouting.

• Standardiziation of the function naming

• Prepararation of the project for future development.

As a result of this effort:

• pgRouting has a simplified structure

• Significant new functionality has being added

• Documentation has being integrated

• Testing has being integrated

• And made it easier for multiple developers to make contributions.

Important Changes

• Graph Analytics - tools for detecting and fixing connection some problems in a graph

• A collection of useful utility functions

• Two new All Pairs Short Path algorithms (pgr_apspJohnson, pgr_apspWarshall)

• Bi-directional Dijkstra and A-star search algorithms (pgr_bdAstar, pgr_bdDijkstra)

11https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.0.0%22+is%3Aclosed

288 Chapter 9. Change Log

https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.0.0%22+is%3Aclosed

pgRouting Manual, Release 2.3.2 (master)

• One to many nodes search (pgr_kDijkstra)

• K alternate paths shortest path (pgr_ksp)

• New TSP solver that simplifies the code and the build process (pgr_tsp), dropped “Gaul Library” depen-
dency

• Turn Restricted shortest path (pgr_trsp) that replaces Shooting Star

• Dropped support for Shooting Star

• Built a test infrastructure that is run before major code changes are checked in

• Tested and fixed most all of the outstanding bugs reported against 1.x that existing in the 2.0-dev code base.

• Improved build process for Windows

• Automated testing on Linux and Windows platforms trigger by every commit

• Modular library design

• Compatibility with PostgreSQL 9.1 or newer

• Compatibility with PostGIS 2.0 or newer

• Installs as PostgreSQL EXTENSION

• Return types refactored and unified

• Support for table SCHEMA in function parameters

• Support for st_ PostGIS function prefix

• Added pgr_ prefix to functions and types

• Better documentation: http://docs.pgrouting.org

9.13 pgRouting 1.x Release Notes

To see the issues closed by this release see the Git closed issues for 1.x12 on Github. The following release notes
have been copied from the previous RELEASE_NOTES file and are kept as a reference.

9.13.1 Changes for release 1.05

• Bugfixes

9.13.2 Changes for release 1.03

• Much faster topology creation

• Bugfixes

9.13.3 Changes for release 1.02

• Shooting* bugfixes

• Compilation problems solved

9.13.4 Changes for release 1.01

• Shooting* bugfixes

12https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+1.x%22+is%3Aclosed

9.13. pgRouting 1.x Release Notes 289

http://docs.pgrouting.org
https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+1.x%22+is%3Aclosed

pgRouting Manual, Release 2.3.2 (master)

9.13.5 Changes for release 1.0

• Core and extra functions are separated

• Cmake build process

• Bugfixes

9.13.6 Changes for release 1.0.0b

• Additional SQL file with more simple names for wrapper functions

• Bugfixes

9.13.7 Changes for release 1.0.0a

• Shooting* shortest path algorithm for real road networks

• Several SQL bugs were fixed

9.13.8 Changes for release 0.9.9

• PostgreSQL 8.2 support

• Shortest path functions return empty result if they couldn’t find any path

9.13.9 Changes for release 0.9.8

• Renumbering scheme was added to shortest path functions

• Directed shortest path functions were added

• routing_postgis.sql was modified to use dijkstra in TSP search

Indices and tables

• genindex

• search

290 Chapter 9. Change Log

	General
	Introduction
	Installation
	Build Guide
	Support

	Tutorial
	Tutorial
	User's Recipes List
	How to contribute.
	Developer's Guide

	Sample Data
	Sample Data

	Functions
	Version
	Data Types

	Topology functions
	Topology Functions

	Routing Functions
	Routing Functions

	Available Functions but not official pgRouting functions
	Stable proposed Functions
	Experimental and Proposed functions

