pgr_withPointsCost - Proposed

Name

pgr_withPointsCost - Calculates the shortest path and returns only the aggregate cost of the shortest path(s) found, for the combination of points given.

Warning

These are proposed functions for next mayor release.

  • They are not officially in the current release.
  • They will likely officially be part of the next mayor release:
    • The functions make use of ANY-INTEGER and ANY-NUMERICAL
    • Name might not change. (But still can)
    • Signature might not change. (But still can)
    • Functionality might not change. (But still can)
    • pgTap tests have being done. But might need more.
    • Documentation might need refinement.
_images/boost-inside.jpeg

Boost Graph Inside

Availability: 2.2.0

Synopsis

Modify the graph to include points defined by points_sql. Using Dijkstra algorithm, return only the aggregate cost of the shortest path(s) found.

Characteristics:

The main Characteristics are:
  • It does not return a path.
  • Returns the sum of the costs of the shortest path for pair combination of vertices in the modified graph.
  • Vertices of the graph are:
    • positive when it belongs to the edges_sql
    • negative when it belongs to the points_sql
  • Process is done only on edges with positive costs.
  • Values are returned when there is a path.
    • The returned values are in the form of a set of (start_vid, end_vid, agg_cost).
    • When the starting vertex and ending vertex are the same, there is no path.
      • The agg_cost in the non included values (v, v) is 0
    • When the starting vertex and ending vertex are the different and there is no path.
      • The agg_cost in the non included values (u, v) is \(\infty\)
  • If the values returned are stored in a table, the unique index would be the pair: (start_vid, end_vid).
  • For undirected graphs, the results are symmetric.
    • The agg_cost of (u, v) is the same as for (v, u).
  • For optimization purposes, any duplicated value in the start_vids or end_vids is ignored.
  • The returned values are ordered:
    • start_vid ascending
    • end_vid ascending
  • Running time: \(O(| start\_vids | * (V \log V + E))\)

Signature Summary

pgr_withPointsCost(edges_sql, points_sql, start_vid, end_vid, directed, driving_side)
pgr_withPointsCost(edges_sql, points_sql, start_vid, end_vids, directed, driving_side)
pgr_withPointsCost(edges_sql, points_sql, start_vids, end_vid, directed, driving_side)
pgr_withPointsCost(edges_sql, points_sql, start_vids, end_vids, directed, driving_side)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Note

There is no details flag, unlike the other members of the withPoints family of functions.

Signatures

Minimal Use

The minimal signature:
  • Is for a directed graph.
  • The driving side is set as b both. So arriving/departing to/from the point(s) can be in any direction.
pgr_withPointsCost(edges_sql, points_sql, start_vid, end_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)
Example:
SELECT * FROM pgr_withPointsCost(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
    'SELECT pid, edge_id, fraction, side from pointsOfInterest',
    -1, -3);
 start_pid | end_pid | agg_cost 
-----------+---------+----------
        -1 |      -3 |      3.2
(1 row)

One to One

pgr_withPointsCost(edges_sql, points_sql, start_vid, end_vid,
    directed:=true, driving_side:='b')
RETURNS SET OF (seq, node, edge, cost, agg_cost)
Example:
SELECT * FROM pgr_withPointsCost(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
    'SELECT pid, edge_id, fraction, side from pointsOfInterest',
    -1, 3,
    directed := false);
 start_pid | end_pid | agg_cost 
-----------+---------+----------
        -1 |       3 |      1.6
(1 row)

One to Many

pgr_withPointsCost(edges_sql, points_sql, start_vid, end_vids,
    directed:=true, driving_side:='b')
RETURNS SET OF (start_vid, end_vid, agg_cost)
Example:
SELECT * FROM pgr_withPointsCost(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
    'SELECT pid, edge_id, fraction, side from pointsOfInterest',
    -1, ARRAY[-3,5]);
 start_pid | end_pid | agg_cost 
-----------+---------+----------
        -1 |      -3 |      3.2
        -1 |       5 |      1.6
(2 rows)

Many to One

pgr_withPointsCost(edges_sql, points_sql, start_vids, end_vid,
    directed:=true, driving_side:='b')
RETURNS SET OF (start_vid, end_vid, agg_cost)
Example:
SELECT * FROM pgr_withPointsCost(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
    'SELECT pid, edge_id, fraction, side from pointsOfInterest',
    ARRAY[-1,2], -3);
 start_pid | end_pid | agg_cost 
-----------+---------+----------
        -1 |      -3 |      3.2
         2 |      -3 |      2.6
(2 rows)

Many to Many

pgr_withPointsCost(edges_sql, points_sql, start_vids, end_vids,
    directed:=true, driving_side:='b')
RETURNS SET OF (start_vid, end_vid, agg_cost)
Example:
SELECT * FROM pgr_withPointsCost(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
    'SELECT pid, edge_id, fraction, side from pointsOfInterest',
    ARRAY[-1,2], ARRAY[-3,7]);
 start_pid | end_pid | agg_cost 
-----------+---------+----------
        -1 |      -3 |      3.2
        -1 |       7 |      3.6
         2 |      -3 |      2.6
         2 |       7 |        3
(4 rows)

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql:an SQL query, which should return a set of rows with the following columns:
Column Type Default Description
id ANY-INTEGER   Identifier of the edge.
source ANY-INTEGER   Identifier of the first end point vertex of the edge.
target ANY-INTEGER   Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL  

Weight of the edge (source, target)

  • When negative: edge (source, target) does not exist, therefore it’s not part of the graph.
reverse_cost ANY-NUMERICAL -1

Weight of the edge (target, source),

  • When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

ANY-INTEGER:SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the Points SQL query

points_sql:an SQL query, which should return a set of rows with the following columns:
Column Type Description
pid ANY-INTEGER

(optional) Identifier of the point.

  • If column present, it can not be NULL.
  • If column not present, a sequential identifier will be given automatically.
edge_id ANY-INTEGER Identifier of the “closest” edge to the point.
fraction ANY-NUMERICAL Value in <0,1> that indicates the relative postition from the first end point of the edge.
side CHAR

(optional) Value in [‘b’, ‘r’, ‘l’, NULL] indicating if the point is:

  • In the right, left of the edge or
  • If it doesn’t matter with ‘b’ or NULL.
  • If column not present ‘b’ is considered.

Where:

ANY-INTEGER:smallint, int, bigint
ANY-NUMERICAL:smallint, int, bigint, real, float

Description of the parameters of the signatures

Parameter Type Description
edges_sql TEXT Edges SQL query as described above.
points_sql TEXT Points SQL query as described above.
start_vid ANY-INTEGER Starting vertex identifier. When negative: is a point’s pid.
end_vid ANY-INTEGER Ending vertex identifier. When negative: is a point’s pid.
start_vids ARRAY[ANY-INTEGER] Array of identifiers of starting vertices. When negative: is a point’s pid.
end_vids ARRAY[ANY-INTEGER] Array of identifiers of ending vertices. When negative: is a point’s pid.
directed BOOLEAN (optional). When false the graph is considered as Undirected. Default is true which considers the graph as Directed.
driving_side CHAR
(optional) Value in [‘b’, ‘r’, ‘l’, NULL] indicating if the driving side is:
  • In the right or left or
  • If it doesn’t matter with ‘b’ or NULL.
  • If column not present ‘b’ is considered.

Description of the return values

Returns set of (start_vid, end_vid, agg_cost)

Column Type Description
start_vid BIGINT Identifier of the starting vertex. When negative: is a point’s pid.
end_vid BIGINT Identifier of the ending point. When negative: is a point’s pid.
agg_cost FLOAT Aggregate cost from start_vid to end_vid.

Examples

Example:With right side driving topology.
SELECT * FROM pgr_withPointsCost(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
    'SELECT pid, edge_id, fraction, side from pointsOfInterest',
    ARRAY[-1,2], ARRAY[-3,7],
    driving_side := 'l');
 start_pid | end_pid | agg_cost 
-----------+---------+----------
        -1 |      -3 |      3.2
        -1 |       7 |      3.6
         2 |      -3 |      2.6
         2 |       7 |        3
(4 rows)

Example:With left side driving topology.
SELECT * FROM pgr_withPointsCost(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
    'SELECT pid, edge_id, fraction, side from pointsOfInterest',
    ARRAY[-1,2], ARRAY[-3,7],
    driving_side := 'r');
 start_pid | end_pid | agg_cost 
-----------+---------+----------
        -1 |      -3 |        4
        -1 |       7 |      4.4
         2 |      -3 |      2.6
         2 |       7 |        3
(4 rows)

Example:Does not matter driving side.
SELECT * FROM pgr_withPointsCost(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
    'SELECT pid, edge_id, fraction, side from pointsOfInterest',
    ARRAY[-1,2], ARRAY[-3,7],
    driving_side := 'b');
 start_pid | end_pid | agg_cost 
-----------+---------+----------
        -1 |      -3 |      3.2
        -1 |       7 |      3.6
         2 |      -3 |      2.6
         2 |       7 |        3
(4 rows)

The queries use the Sample Data network.

History

  • Proposed in version 2.2