pgr_hawickCircuits - Experimental

pgr_hawickCircuits — Enumeración de los circuitos usando el algoritmo de circutos de Hawick.

Advertencia

Posible bloqueo del servidor

  • Estas funciones pueden crear una caída del servidor

Advertencia

Funciones experimentales

  • No son oficialmente de la versión actual.

  • Es probable que oficialmente no formen parte de la siguiente versión:

    • Las funciones no podrían hacer uso de ANY-INTEGER ni ANY-NUMERICAL

    • El nombre puede cambiar.

    • La firma puede cambiar.

    • La funcionalidad puede cambiar.

    • Las pruebas de pgTap pueden faltar.

    • Posiblemente necesite codificación c/c++.

    • Puede carecer documentación.

    • Hay documentación que, en dado caso, podría ser necesario reescribir.

    • Puede ser necesario que los ejemplos de documentación se generen automáticamente.

    • Puede ser necesaria retroalimentación por parte de la comunidad.

    • Puede depender de una función propuesta de pgRouting

    • Podría depender de una función obsoleta de pgRouting

Disponibilidad

  • Versión 3.4.0

    • New experimental function.

Descripción

El algoritmo Hawick Circuit fue publicado en 2008 por Ken Hawick y Health A. James. Este algoritmo resuelve el problema de detectar y enumerar circuitos en grafos. Es capaz de enumerar circuitos en grafos con arcos dirigidos, arcos múltiples y autoarcos con una implementación eficiente en memoria y de alto rendimiento. Es una extensión del Algoritmo de Johnson para encontrar todos los circuitos elementales de un grafo dirigido.

Hay 2 variaciones definidas en la librería Boost Graph. Aquí hemos implementado sólo la segunda, ya que es la más adecuada y práctica. En esta variación obtenemos los circuitos después de filtrar los circuitos causados por aristas paralelas. Los circuitos de aristas paralelas tienen más casos de uso cuando se quiere contar el número de circuitos.

Las características principales son:

  • La implementación del algoritmo sirve solo para grafos dirigidos

  • Es una variación del algoritmo de Johnson para la enumeración de circuitos.

  • El algoritmo da como resultado los distintos circuitos presentes en el grafo.

  • Complejidad temporal: \(O((V + E) (c + 1))\)

    • donde \(|E|\) es la cantidad de arístas en el grafo,

    • \(|V|\) es la cantidad de vertices del grafo.

    • \(|c|\) es la cantidad de vertices del grafo.

Boost Graph inside Boost Graph Inside

Firmas

Resumen

pgr_hawickCircuits(SQL de aristas)
Regresa el conjunto de (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
O CONJUNTO VACÍO
Ejemplo:

Circuitos dentro de los Datos Muestra de pgRouting

SELECT * FROM pgr_hawickCircuits(
    'SELECT id, source, target, cost, reverse_cost FROM edges'
);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
   1 |       1 |        0 |         1 |       1 |    1 |    6 |    1 |        0
   2 |       1 |        1 |         1 |       1 |    3 |    6 |    1 |        1
   3 |       1 |        2 |         1 |       1 |    1 |   -1 |    0 |        2
   4 |       2 |        0 |         3 |       3 |    3 |    7 |    1 |        0
   5 |       2 |        1 |         3 |       3 |    7 |    7 |    1 |        1
   6 |       2 |        2 |         3 |       3 |    3 |   -1 |    0 |        2
   7 |       3 |        0 |         7 |       7 |    7 |    4 |    1 |        0
   8 |       3 |        1 |         7 |       7 |    6 |    4 |    1 |        1
   9 |       3 |        2 |         7 |       7 |    7 |   -1 |    0 |        2
  10 |       4 |        0 |         7 |       7 |    7 |    8 |    1 |        0
  11 |       4 |        1 |         7 |       7 |   11 |    8 |    1 |        1
  12 |       4 |        2 |         7 |       7 |    7 |   -1 |    0 |        2
  13 |       5 |        0 |         7 |       7 |    7 |    8 |    1 |        0
  14 |       5 |        1 |         7 |       7 |   11 |   11 |    1 |        1
  15 |       5 |        2 |         7 |       7 |   12 |   13 |    1 |        2
  16 |       5 |        3 |         7 |       7 |   17 |   15 |    1 |        3
  17 |       5 |        4 |         7 |       7 |   16 |   16 |    1 |        4
  18 |       5 |        5 |         7 |       7 |   15 |    3 |    1 |        5
  19 |       5 |        6 |         7 |       7 |   10 |    2 |    1 |        6
  20 |       5 |        7 |         7 |       7 |    6 |    4 |    1 |        7
  21 |       5 |        8 |         7 |       7 |    7 |   -1 |    0 |        8
  22 |       6 |        0 |         7 |       7 |    7 |    8 |    1 |        0
  23 |       6 |        1 |         7 |       7 |   11 |    9 |    1 |        1
  24 |       6 |        2 |         7 |       7 |   16 |   16 |    1 |        2
  25 |       6 |        3 |         7 |       7 |   15 |    3 |    1 |        3
  26 |       6 |        4 |         7 |       7 |   10 |    2 |    1 |        4
  27 |       6 |        5 |         7 |       7 |    6 |    4 |    1 |        5
  28 |       6 |        6 |         7 |       7 |    7 |   -1 |    0 |        6
  29 |       7 |        0 |         7 |       7 |    7 |   10 |    1 |        0
  30 |       7 |        1 |         7 |       7 |    8 |   10 |    1 |        1
  31 |       7 |        2 |         7 |       7 |    7 |   -1 |    0 |        2
  32 |       8 |        0 |         7 |       7 |    7 |   10 |    1 |        0
  33 |       8 |        1 |         7 |       7 |    8 |   12 |    1 |        1
  34 |       8 |        2 |         7 |       7 |   12 |   13 |    1 |        2
  35 |       8 |        3 |         7 |       7 |   17 |   15 |    1 |        3
  36 |       8 |        4 |         7 |       7 |   16 |    9 |    1 |        4
  37 |       8 |        5 |         7 |       7 |   11 |    8 |    1 |        5
  38 |       8 |        6 |         7 |       7 |    7 |   -1 |    0 |        6
  39 |       9 |        0 |         7 |       7 |    7 |   10 |    1 |        0
  40 |       9 |        1 |         7 |       7 |    8 |   12 |    1 |        1
  41 |       9 |        2 |         7 |       7 |   12 |   13 |    1 |        2
  42 |       9 |        3 |         7 |       7 |   17 |   15 |    1 |        3
  43 |       9 |        4 |         7 |       7 |   16 |   16 |    1 |        4
  44 |       9 |        5 |         7 |       7 |   15 |    3 |    1 |        5
  45 |       9 |        6 |         7 |       7 |   10 |    2 |    1 |        6
  46 |       9 |        7 |         7 |       7 |    6 |    4 |    1 |        7
  47 |       9 |        8 |         7 |       7 |    7 |   -1 |    0 |        8
  48 |      10 |        0 |         7 |       7 |    7 |   10 |    1 |        0
  49 |      10 |        1 |         7 |       7 |    8 |   12 |    1 |        1
  50 |      10 |        2 |         7 |       7 |   12 |   13 |    1 |        2
  51 |      10 |        3 |         7 |       7 |   17 |   15 |    1 |        3
  52 |      10 |        4 |         7 |       7 |   16 |   16 |    1 |        4
  53 |      10 |        5 |         7 |       7 |   15 |    3 |    1 |        5
  54 |      10 |        6 |         7 |       7 |   10 |    5 |    1 |        6
  55 |      10 |        7 |         7 |       7 |   11 |    8 |    1 |        7
  56 |      10 |        8 |         7 |       7 |    7 |   -1 |    0 |        8
  57 |      11 |        0 |         6 |       6 |    6 |    1 |    1 |        0
  58 |      11 |        1 |         6 |       6 |    5 |    1 |    1 |        1
  59 |      11 |        2 |         6 |       6 |    6 |   -1 |    0 |        2
  60 |      12 |        0 |        10 |      10 |   10 |    5 |    1 |        0
  61 |      12 |        1 |        10 |      10 |   11 |   11 |    1 |        1
  62 |      12 |        2 |        10 |      10 |   12 |   13 |    1 |        2
  63 |      12 |        3 |        10 |      10 |   17 |   15 |    1 |        3
  64 |      12 |        4 |        10 |      10 |   16 |   16 |    1 |        4
  65 |      12 |        5 |        10 |      10 |   15 |    3 |    1 |        5
  66 |      12 |        6 |        10 |      10 |   10 |   -1 |    0 |        6
  67 |      13 |        0 |        10 |      10 |   10 |    5 |    1 |        0
  68 |      13 |        1 |        10 |      10 |   11 |    9 |    1 |        1
  69 |      13 |        2 |        10 |      10 |   16 |   16 |    1 |        2
  70 |      13 |        3 |        10 |      10 |   15 |    3 |    1 |        3
  71 |      13 |        4 |        10 |      10 |   10 |   -1 |    0 |        4
  72 |      14 |        0 |        11 |      11 |   11 |   11 |    1 |        0
  73 |      14 |        1 |        11 |      11 |   12 |   13 |    1 |        1
  74 |      14 |        2 |        11 |      11 |   17 |   15 |    1 |        2
  75 |      14 |        3 |        11 |      11 |   16 |    9 |    1 |        3
  76 |      14 |        4 |        11 |      11 |   11 |   -1 |    0 |        4
  77 |      15 |        0 |        11 |      11 |   11 |    9 |    1 |        0
  78 |      15 |        1 |        11 |      11 |   16 |    9 |    1 |        1
  79 |      15 |        2 |        11 |      11 |   11 |   -1 |    0 |        2
  80 |      16 |        0 |         8 |       8 |    8 |   14 |    1 |        0
  81 |      16 |        1 |         8 |       8 |    9 |   14 |    1 |        1
  82 |      16 |        2 |         8 |       8 |    8 |   -1 |    0 |        2
  83 |      17 |        0 |         2 |       2 |    2 |   17 |    1 |        0
  84 |      17 |        1 |         2 |       2 |    4 |   17 |    1 |        1
  85 |      17 |        2 |         2 |       2 |    2 |   -1 |    0 |        2
  86 |      18 |        0 |        13 |      13 |   13 |   18 |    1 |        0
  87 |      18 |        1 |        13 |      13 |   14 |   18 |    1 |        1
  88 |      18 |        2 |        13 |      13 |   13 |   -1 |    0 |        2
  89 |      19 |        0 |        17 |      17 |   17 |   15 |    1 |        0
  90 |      19 |        1 |        17 |      17 |   16 |   15 |    1 |        1
  91 |      19 |        2 |        17 |      17 |   17 |   -1 |    0 |        2
  92 |      20 |        0 |        16 |      16 |   16 |   16 |    1 |        0
  93 |      20 |        1 |        16 |      16 |   15 |   16 |    1 |        1
  94 |      20 |        2 |        16 |      16 |   16 |   -1 |    0 |        2
(94 rows)

Parámetros

Parámetro

Tipo

x Defecto

Descripción

SQL de aristas

TEXT

SQL de aristas descritas más adelante.

Parámetros opcionales

Columna

Tipo

x Defecto

Descripción

directed

BOOLEAN

true

  • Cuando true el gráfo se considera Dirigido

  • Cuando false el gráfo se considera No Dirigido.

Consultas Internas

SQL aristas

Columna

Tipo

x Defecto

Descripción

source

ENTEROS

Identificador del primer vértice de la arista.

target

ENTEROS

Identificador del segundo vértice de la arista.

cost

FLOTANTES

Peso de la arista (source, target)

reverse_cost

FLOTANTES

-1

Peso de la arista (target, source)

  • Cuando negativo: la arista (target, source) no existe, por lo tanto no es parte del grafo.

Donde:

ENTEROS:

SMALLINT, INTEGER, BIGINT

FLOTANTES:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Columnas de resultados

Columna

Tipo

Descripción

seq

INTEGER

Valor secuencial a partir de 1

path_id

INTEGER

Identificador del circuito comenzando con 1

path_seq

INTEGER

Posición relativa en la camino. Tiene el valor 0 para el inicio de la ruta

start_vid

BIGINT

Identificador del vértice inicial del circuito.

end_vid

BIGINT

Identificador del vértice final del circuito.

node

BIGINT

Identificador del nodo en la ruta de un vértice al siguiente vértice.

edge

BIGINT

Identificador del borde utilizado para ir del nodo al siguiente nodo de la secuencia de ruta. -1 para el último nodo de la ruta.

cost

FLOAT

Costo para atravesar desde node usando edge hasta el siguiente nodo en la secuencia de la ruta.

agg_cost

FLOAT

Coste agregado de start_v to node.

Ver también

Índices y tablas