pgr_withPointsKSP
- Find the K shortest paths using Yen’s algorithm.
Warning
Proposed functions for next mayor release.
Availability
Support
Modifies the graph to include the points defined in the points_sql
and
using Yen algorithm, finds the \(K\) shortest paths.
Summary
pgr_withPointsKSP(edges_sql, points_sql, start_pid, end_pid, K [, directed] [, heap_paths] [, driving_side] [, details])
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)
Using defaults
pgr_withPointsKSP(edges_sql, points_sql, start_pid, end_pid, K)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)
Example: | From point \(1\) to point \(2\) in \(2\) cycles |
---|
SELECT * FROM pgr_withPointsKSP(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, -2, 2);
seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
1 | 1 | 1 | -1 | 1 | 0.6 | 0
2 | 1 | 2 | 2 | 4 | 1 | 0.6
3 | 1 | 3 | 5 | 8 | 1 | 1.6
4 | 1 | 4 | 6 | 9 | 1 | 2.6
5 | 1 | 5 | 9 | 15 | 0.4 | 3.6
6 | 1 | 6 | -2 | -1 | 0 | 4
7 | 2 | 1 | -1 | 1 | 0.6 | 0
8 | 2 | 2 | 2 | 4 | 1 | 0.6
9 | 2 | 3 | 5 | 8 | 1 | 1.6
10 | 2 | 4 | 6 | 11 | 1 | 2.6
11 | 2 | 5 | 11 | 13 | 1 | 3.6
12 | 2 | 6 | 12 | 15 | 0.6 | 4.6
13 | 2 | 7 | -2 | -1 | 0 | 5.2
(13 rows)
Finds the \(K\) shortest paths depending on the optional parameters setup.
pgr_withPointsKSP(edges_sql, points_sql, start_pid, end_pid, K [, directed] [, heap_paths] [, driving_side] [, details])
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)
Example: | From point \(1\) to vertex \(6\) in \(2\) cycles with details. |
---|
SELECT * FROM pgr_withPointsKSP(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, 6, 2, details := true);
seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
1 | 1 | 1 | -1 | 1 | 0.6 | 0
2 | 1 | 2 | 2 | 4 | 0.7 | 0.6
3 | 1 | 3 | -6 | 4 | 0.3 | 1.3
4 | 1 | 4 | 5 | 8 | 1 | 1.6
5 | 1 | 5 | 6 | -1 | 0 | 2.6
6 | 2 | 1 | -1 | 1 | 0.6 | 0
7 | 2 | 2 | 2 | 4 | 0.7 | 0.6
8 | 2 | 3 | -6 | 4 | 0.3 | 1.3
9 | 2 | 4 | 5 | 10 | 1 | 1.6
10 | 2 | 5 | 10 | 12 | 0.6 | 2.6
11 | 2 | 6 | -3 | 12 | 0.4 | 3.2
12 | 2 | 7 | 11 | 13 | 1 | 3.6
13 | 2 | 8 | 12 | 15 | 0.6 | 4.6
14 | 2 | 9 | -2 | 15 | 0.4 | 5.2
15 | 2 | 10 | 9 | 9 | 1 | 5.6
16 | 2 | 11 | 6 | -1 | 0 | 6.6
(16 rows)
Parameter | Type | Description |
---|---|---|
edges_sql | TEXT |
Edges SQL query as described above. |
points_sql | TEXT |
Points SQL query as described above. |
start_pid | ANY-INTEGER |
Starting point id. |
end_pid | ANY-INTEGER |
Ending point id. |
K | INTEGER |
Number of shortest paths. |
directed | BOOLEAN |
(optional). When false the graph is considered as Undirected. Default is true which considers the graph as Directed. |
heap_paths | BOOLEAN |
(optional). When true the paths calculated to get the shortests paths will be returned also. Default is false only the K shortest paths are returned. |
driving_side | CHAR |
|
details | BOOLEAN |
(optional). When true the results will include the driving distance to the points with in the distance .
Default is false which ignores other points of the points_sql. |
Column | Type | Default | Description |
---|---|---|---|
id | ANY-INTEGER |
Identifier of the edge. | |
source | ANY-INTEGER |
Identifier of the first end point vertex of the edge. | |
target | ANY-INTEGER |
Identifier of the second end point vertex of the edge. | |
cost | ANY-NUMERICAL |
Weight of the edge (source, target)
|
|
reverse_cost | ANY-NUMERICAL |
-1 | Weight of the edge (target, source),
|
Where:
ANY-INTEGER: | SMALLINT, INTEGER, BIGINT |
---|---|
ANY-NUMERICAL: | SMALLINT, INTEGER, BIGINT, REAL, FLOAT |
Description of the Points SQL query
points_sql: | an SQL query, which should return a set of rows with the following columns: |
---|
Column | Type | Description |
---|---|---|
pid | ANY-INTEGER |
(optional) Identifier of the point.
|
edge_id | ANY-INTEGER |
Identifier of the “closest” edge to the point. |
fraction | ANY-NUMERICAL |
Value in <0,1> that indicates the relative postition from the first end point of the edge. |
side | CHAR |
(optional) Value in [‘b’, ‘r’, ‘l’, NULL] indicating if the point is:
|
Where:
ANY-INTEGER: | smallint, int, bigint |
---|---|
ANY-NUMERICAL: | smallint, int, bigint, real, float |
Column | Type | Description |
---|---|---|
seq | INTEGER |
Row sequence. |
path_seq | INTEGER |
Relative position in the path of node and edge. Has value 1 for the beginning of a path. |
path_id | INTEGER |
Path identifier. The ordering of the paths: For two paths i, j if i < j then agg_cost(i) <= agg_cost(j). |
node | BIGINT |
Identifier of the node in the path. Negative values are the identifiers of a point. |
edge | BIGINT |
|
cost | FLOAT |
|
agg_cost | FLOAT |
|
Example: | Left side driving topology from point \(1\) to point \(2\) in \(2\) cycles, with details |
---|
SELECT * FROM pgr_withPointsKSP(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, -2, 2,
driving_side := 'l', details := true);
seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
1 | 1 | 1 | -1 | 1 | 0.6 | 0
2 | 1 | 2 | 2 | 4 | 0.7 | 0.6
3 | 1 | 3 | -6 | 4 | 0.3 | 1.3
4 | 1 | 4 | 5 | 8 | 1 | 1.6
5 | 1 | 5 | 6 | 9 | 1 | 2.6
6 | 1 | 6 | 9 | 15 | 1 | 3.6
7 | 1 | 7 | 12 | 15 | 0.6 | 4.6
8 | 1 | 8 | -2 | -1 | 0 | 5.2
9 | 2 | 1 | -1 | 1 | 0.6 | 0
10 | 2 | 2 | 2 | 4 | 0.7 | 0.6
11 | 2 | 3 | -6 | 4 | 0.3 | 1.3
12 | 2 | 4 | 5 | 8 | 1 | 1.6
13 | 2 | 5 | 6 | 11 | 1 | 2.6
14 | 2 | 6 | 11 | 13 | 1 | 3.6
15 | 2 | 7 | 12 | 15 | 0.6 | 4.6
16 | 2 | 8 | -2 | -1 | 0 | 5.2
(16 rows)
Example: | Right side driving topology from point \(1\) to point \(2\) in \(2\) cycles, with heap paths and details |
---|
SELECT * FROM pgr_withPointsKSP(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, -2, 2,
heap_paths := true, driving_side := 'r', details := true);
seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
1 | 1 | 1 | -1 | 1 | 0.4 | 0
2 | 1 | 2 | 1 | 1 | 1 | 0.4
3 | 1 | 3 | 2 | 4 | 0.7 | 1.4
4 | 1 | 4 | -6 | 4 | 0.3 | 2.1
5 | 1 | 5 | 5 | 8 | 1 | 2.4
6 | 1 | 6 | 6 | 9 | 1 | 3.4
7 | 1 | 7 | 9 | 15 | 0.4 | 4.4
8 | 1 | 8 | -2 | -1 | 0 | 4.8
9 | 2 | 1 | -1 | 1 | 0.4 | 0
10 | 2 | 2 | 1 | 1 | 1 | 0.4
11 | 2 | 3 | 2 | 4 | 0.7 | 1.4
12 | 2 | 4 | -6 | 4 | 0.3 | 2.1
13 | 2 | 5 | 5 | 8 | 1 | 2.4
14 | 2 | 6 | 6 | 11 | 1 | 3.4
15 | 2 | 7 | 11 | 13 | 1 | 4.4
16 | 2 | 8 | 12 | 15 | 1 | 5.4
17 | 2 | 9 | 9 | 15 | 0.4 | 6.4
18 | 2 | 10 | -2 | -1 | 0 | 6.8
19 | 3 | 1 | -1 | 1 | 0.4 | 0
20 | 3 | 2 | 1 | 1 | 1 | 0.4
21 | 3 | 3 | 2 | 4 | 0.7 | 1.4
22 | 3 | 4 | -6 | 4 | 0.3 | 2.1
23 | 3 | 5 | 5 | 10 | 1 | 2.4
24 | 3 | 6 | 10 | 12 | 0.6 | 3.4
25 | 3 | 7 | -3 | 12 | 0.4 | 4
26 | 3 | 8 | 11 | 13 | 1 | 4.4
27 | 3 | 9 | 12 | 15 | 1 | 5.4
28 | 3 | 10 | 9 | 15 | 0.4 | 6.4
29 | 3 | 11 | -2 | -1 | 0 | 6.8
(29 rows)
The queries use the Sample Data network.