pgr_contractionLinear
- Proposed¶
pgr_contractionLinear
— Performs graph contraction and returns the contracted
vertices and edges.
Availability
Version 3.8.0
New proposed function.
Description¶
Contraction reduces the size of the graph by removing some of the vertices and edges and, for example, might add edges that represent a sequence of original edges decreasing the total time and space used in graph algorithms.
The main Characteristics are:
Process is done only on edges with positive costs.
Does not return the full contracted graph.
Only changes on the graph are returned.
The returned values include:
The new edges generated by linear contraction.
The modified vertices generated by dead end contraction.
The returned values are ordered as follows:
column
id
ascending when its a modified vertex.column
id
with negative numbers descending when its a new edge.
Signatures¶
[directed, max_cycles, forbidden_vertices]
(type, id, contracted_vertices, source, target, cost)
- Example:
Linear contraction on an undirected graph.
SELECT * FROM pgr_contractionLinear(
'SELECT id, source, target, cost, reverse_cost FROM edges',
directed => false);
type | id | contracted_vertices | source | target | cost
------+----+---------------------+--------+--------+------
e | -1 | {3} | 1 | 7 | 2
e | -2 | {17} | 12 | 16 | 2
e | -3 | {15} | 10 | 16 | 2
(3 rows)
The green nodes are linear nodes and will not be part of the contracted graph.
All edges adjacent will not be part of the contracted graph.
The red lines will be new edges of the contracted graph.
![graph G {
splines=false;
3,15,17 [shape=circle;style=filled;color=lightgreen;fontsize=8;width=0.3;fixedsize=true];
1,2,4,5,6,7,8,9,10,11,12,13,14,16 [shape=circle;style=filled;color=cyan;fontsize=8;width=0.3;fixedsize=true];
1:n -- 7:n [label="-1",fontsize=8,color=red];
12:s -- 17:sw -- 16:w [label="-2",fontsize=8,color=red];
10:n -- 15:nw -- 16:w [label="-3",fontsize=8,color=red];
5 -- 6 [label="1",fontsize=8]; 6 -- 10 [label="2",fontsize=8];
10 -- 15 [label="3",fontsize=8]; 6 -- 7 [label="4",fontsize=8];
10 -- 11 [label="5",fontsize=8]; 1 -- 3 [label="6",fontsize=8];
3 -- 7 [label="7",fontsize=8]; 7 -- 11 [label="8",fontsize=8];
11 -- 16 [label="9",fontsize=8]; 7 -- 8 [label="10",fontsize=8];
11 -- 12 [label="11",fontsize=8]; 8 -- 12 [label="12",fontsize=8];
12 -- 17 [label="13",fontsize=8]; 8 -- 9 [label="",fontsize=8];
16 -- 17 [label="15",fontsize=8]; 15 -- 16 [label="16",fontsize=8];
2 -- 4 [label="17",fontsize=8]; 13 -- 14 [label="18",fontsize=8];
1 [pos="0,2!"]; 2 [pos="0.5,3.5!"];
3 [pos="1,2!"]; 4 [pos="2,3.5!"];
5 [pos="2,0!"]; 6 [pos="2,1!"];
7 [pos="2,2!"]; 8 [pos="2,3!"];
9 [pos="2,4!"]; 10 [pos="3,1!"];
11 [pos="3,2!"]; 12 [pos="3,3!"];
13 [pos="3.5,2.3!"]; 14 [pos="3.5,4!"];
15 [pos="4,1!"]; 16 [pos="4,2!"];
17 [pos="4,3!"];
}](_images/graphviz-069192ad4349ef79e70153b36d4506142c52a931.png)
Parameters¶
Parameter |
Type |
Description |
---|---|---|
|
Edges SQL as described below. |
|
contraction Order |
|
Ordered contraction operations.
|
Optional parameters¶
Column |
Type |
Default |
Description |
---|---|---|---|
|
|
|
|
Contraction optional parameters¶
Column |
Type |
Default |
Description |
---|---|---|---|
|
|
Empty |
Identifiers of vertices forbidden for contraction. |
|
|
Number of times the contraction operations on |
Inner Queries¶
Edges SQL¶
Column |
Type |
Default |
Description |
---|---|---|---|
|
ANY-INTEGER |
Identifier of the edge. |
|
|
ANY-INTEGER |
Identifier of the first end point vertex of the edge. |
|
|
ANY-INTEGER |
Identifier of the second end point vertex of the edge. |
|
|
ANY-NUMERICAL |
Weight of the edge ( |
|
|
ANY-NUMERICAL |
-1 |
Weight of the edge (
|
Where:
- ANY-INTEGER:
SMALLINT
,INTEGER
,BIGINT
- ANY-NUMERICAL:
SMALLINT
,INTEGER
,BIGINT
,REAL
,FLOAT
Result columns¶
Returns set of (type, id, contracted_vertices, source, target, cost)
The function returns a single row. The columns of the row are:
Column |
Type |
Description |
---|---|---|
|
|
Value = |
|
|
A pseudo id of the edge.
|
|
|
Array of contracted vertex identifiers. |
|
|
Identifier of the source vertex of the current edge. |
|
|
Identifier of the target vertex of the current edge. |
|
|
Weight of the current edge. |
Additional Examples¶
Linear edges¶
Undirected graph
A node connects two (or more) linear edges when
The number of adjacent vertices is 2.
![graph G {
label = "Linear edges"
2 [shape=circle;style=filled;color=lightgreen;fontsize=8;width=0.3;fixedsize=true];
1,3 [shape=circle;style=filled;color=cyan;fontsize=8;width=0.3;fixedsize=true];
1 -- 2 -- 3 -- 2;
1 [pos="0,2!"]; 2 [pos="1,2!"]; 3 [pos="2,2!"];
}](_images/graphviz-c915ca43812bfb7afeeffd1d2f7e072f6593f696.png)
![graph G {
label = "Non linear edges"
4,5,6,7 [shape=circle;style=filled;color=cyan;fontsize=8;width=0.3;fixedsize=true];
4 -- 5 -- 6 -- 5; 5 --7;
4 [pos="0,0!"]; 5 [pos="1,0!"]; 6 [pos="2,0!"];
7 [pos="1,1!"];
}](_images/graphviz-80d04e0ac46c2ac58db33ed33833b8376ea87eef.png)
In case of a directed graph, a node is considered a linear node when
The number of adjacent vertices is 2.
Linearity is symmetrical.
![digraph G {
label = "Linearity is symmetrical."
2 [shape=circle;style=filled;color=lightgreen;fontsize=8;width=0.3;fixedsize=true];
1,3 [shape=circle;style=filled;color=cyan;fontsize=8;width=0.3;fixedsize=true];
1 -> 2 -> 3 -> 2 -> 1;
1 [pos="0,2!"]; 2 [pos="1,2!"]; 3 [pos="2,2!"];
}](_images/graphviz-ec0146321e74ae314bab5090db3f7e72f2fa1f65.png)
![digraph G {
label = "Linearity is not symmetrical."
2 [shape=circle;style=filled;color=lightgreen;fontsize=8;width=0.3;fixedsize=true];
1,3 [shape=circle;style=filled;color=cyan;fontsize=8;width=0.3;fixedsize=true];
1 -> 2 -> 3 -> 2;
1 [pos="0,2!"]; 2 [pos="1,2!"]; 3 [pos="2,2!"];
}](_images/graphviz-93233ecad7b6cf2ed672bd846f53b9d50a980a50.png)
Linearity is not symmetrical¶
Directed graph
Graph where linearity is not symmetrical.
![digraph G {
2 [shape=circle;style=filled;color=lightgreen;fontsize=8;width=0.3;fixedsize=true];
1,3 [shape=circle;style=filled;color=cyan;fontsize=8;width=0.3;fixedsize=true];
1 -> 2 [label="1",fontsize=8];
2 -> 3 [label="3",fontsize=8];
3 -> 2 [label="4",fontsize=8];
1 [pos="0,2!"]; 2 [pos="1,2!"]; 3 [pos="2,2!"];
}](_images/graphviz-2956b8517f0df69088225a55990846dbb9ae75e4.png)
When the graph is processed as a directed graph, linearity is not symmetrical, therefore the graph can not be contracted.
SELECT * FROM pgr_contractionLinear(
$$SELECT * FROM (VALUES
(1, 1, 2, 1, -1),
(2, 2, 3, 3, 4))
AS edges(id,source,target,cost,reverse_cost)$$,
directed => true);
type | id | contracted_vertices | source | target | cost
------+----+---------------------+--------+--------+------
(0 rows)
Undirected graph
When the same graph is processed as an undirected graph, linearity is symmetrical, therefore the graph can be contracted.
![graph G {
2 [shape=circle;style=filled;color=lightgreen;fontsize=8;width=0.3;fixedsize=true];
1,3 [shape=circle;style=filled;color=cyan;fontsize=8;width=0.3;fixedsize=true];
1 -- 2 [label="1",fontsize=8];
2 -- 3 [label="3",fontsize=8];
3 -- 2 [label="4",fontsize=8];
1 [pos="0,2!"]; 2 [pos="1,2!"]; 3 [pos="2,2!"];
}](_images/graphviz-946e80eb77cb0529d96e6199cc314eac3c039ad6.png)
SELECT * FROM pgr_contractionLinear(
$$SELECT * FROM (VALUES
(1, 1, 2, 1, -1),
(2, 2, 3, 3, 4))
AS edges(id,source,target,cost,reverse_cost)$$,
directed => false);
type | id | contracted_vertices | source | target | cost
------+----+---------------------+--------+--------+------
e | -1 | {2} | 1 | 3 | 4
(1 row)
The three edges can be replaced by one undirected edge
Edge
.With cost:
.Contracted vertices in the edge:
.
![graph G {
1,3 [shape=circle;style=filled;color=cyan;fontsize=8;width=0.3;fixedsize=true];
1 -- 3 [label="4, {2}",fontsize=8;color=red];
1 [pos="0,2!"]; 3 [pos="2,2!"];
}](_images/graphviz-d625f5035052b5ad79de074aa489048c0241ff78.png)
Linearity is symmetrical¶
Directed graph
Graph where linearity is symmetrical.
![digraph G {
2 [shape=circle;style=filled;color=lightgreen;fontsize=8;width=0.3;fixedsize=true];
1,3 [shape=circle;style=filled;color=cyan;fontsize=8;width=0.3;fixedsize=true];
1 -> 2 [label="1",fontsize=8];
2 -> 1 [label="2",fontsize=8];
2 -> 3 [label="3",fontsize=8];
3 -> 2 [label="4",fontsize=8];
1 [pos="0,2!"]; 2 [pos="1,2!"]; 3 [pos="2,2!"];
}](_images/graphviz-49002a1065b9c5bc7564f25175a447b0cccd5c80.png)
When the graph is processed as a directed graph, linearity is not symmetrical, therefore the graph can not be contracted.
SELECT * FROM pgr_contractionLinear(
$$SELECT * FROM (VALUES
(1, 1, 2, 1, 2),
(2, 2, 3, 3, 4))
AS edges(id,source,target,cost,reverse_cost)$$,
directed => true);
type | id | contracted_vertices | source | target | cost
------+----+---------------------+--------+--------+------
e | -1 | {2} | 1 | 3 | 4
e | -2 | {2} | 3 | 1 | 6
(2 rows)
The four edges can be replaced by two directed edges.
Edge
.With cost:
.Contracted vertices in the edge:
.
Edge
.With cost:
.Contracted vertices in the edge:
.
![digraph G {
1,3 [shape=circle;style=filled;color=cyan;fontsize=8;width=0.3;fixedsize=true];
1 -> 3 [label="4, {2}",fontsize=8;color=red];
3 -> 1 [label="6, {2}",fontsize=8;color=red];
1 [pos="0,2!"]; 3 [pos="2,2!"];
}](_images/graphviz-6f75bf8e66681aa20c069d3ead197ce9e62f267c.png)
Undirected graph
When the same graph is processed as an undirected graph, linearity is symmetrical, therefore the graph can be contracted.
![graph G {
2 [shape=circle;style=filled;color=lightgreen;fontsize=8;width=0.3;fixedsize=true];
1,3 [shape=circle;style=filled;color=cyan;fontsize=8;width=0.3;fixedsize=true];
1 -- 2 [label="1",fontsize=8];
2 -- 1 [label="2",fontsize=8];
2 -- 3 [label="3",fontsize=8];
3 -- 2 [label="4",fontsize=8];
1 [pos="0,2!"]; 2 [pos="1,2!"]; 3 [pos="2,2!"];
}](_images/graphviz-4772c46a98d0df937b2ce4687655644d65810756.png)
SELECT * FROM pgr_contractionLinear(
$$SELECT * FROM (VALUES
(1, 1, 2, 1, 2),
(2, 2, 3, 3, 4))
AS edges(id,source,target,cost,reverse_cost)$$,
directed => false);
type | id | contracted_vertices | source | target | cost
------+----+---------------------+--------+--------+------
e | -1 | {2} | 1 | 3 | 4
(1 row)
The four edges can be replaced by one undirected edge.
Edge
.With cost:
.Contracted vertices in the edge:
.
![graph G {
1,3 [shape=circle;style=filled;color=cyan;fontsize=8;width=0.3;fixedsize=true];
1 -- 3 [label="4, {2}",fontsize=8;color=red];
1 [pos="0,2!"]; 3 [pos="2,2!"];
}](_images/graphviz-6bec6c1f2e220906e102c9d21ef8783219c7ec42.png)
Step by step linear contraction¶
The linear contraction will stop when there are no more linear edges. For example from the following graph there are linear edges
![digraph G {
1, 2, 3, 4, G [fontsize=8;fixedsize=true;style=filled];
1, 2, 3, 4 [shape=circle];
1, 4 [color=deepskyblue];
2, 3 [color=green];
G [shape=tripleoctagon;width=1.5;color=deepskyblue;label = "Rest of the Graph"];
G -> {1, 4} [dir=none, weight=1, penwidth=3];
1 -> 2 [label="1";fontsize=8;fixedsize=true];
2 -> 3 [label="1";fontsize=8;fixedsize=true];
3 -> 4 [label="1";fontsize=8;fixedsize=true];
G [pos="1,1!"];
1 [pos="0,0!"]; 2 [pos="1,0!"]; 3 [pos="2,0!"]; 4 [pos="3,0!"];
}](_images/graphviz-6567892805665a7ce5981b1a08fc9041d392b59b.png)
Contracting vertex
The vertex
is removed from the graphThe edges
and are removed from the graph.A new edge
is inserted represented with red color.
![digraph G {
1, 2, 4, G [fontsize=8;fixedsize=true;style=filled];
1, 2, 4 [shape=circle];
1, 4 [color=deepskyblue];
2 [color=green];
G [shape=tripleoctagon;width=1.5;color=deepskyblue;label = "Rest of the Graph"];
G -> {1, 4} [dir=none, weight=1, penwidth=3];
1 -> 2 [label="1";fontsize=8;fixedsize=true];
2 -> 4 [label="2, {3}";color=red;fontsize=8;fixedsize=true];
G [pos="1,1!"];
1 [pos="0,0!"]; 2 [pos="1,0!"]; 4 [pos="3,0!"];
}](_images/graphviz-9979db882d187d41972ef525a3409d772accfd18.png)
Contracting vertex
The vertex
is removed from the graphThe edges
and are removed from the graph.A new edge
is inserted represented with red color.
![digraph G {
1, 4, G [fontsize=8;fixedsize=true;style=filled];
1, 4 [shape=circle];
1, 4 [color=deepskyblue];
G [shape=tripleoctagon;width=1.5;color=deepskyblue;label = "Rest of the Graph"];
G -> {1, 4} [dir=none, weight=1, penwidth=3];
1 -> 4 [label="3, {2,3}";color=red;fontsize=8;fixedsize=true]
G [pos="1,1!"];
1 [pos="0,0!"]; 4 [pos="3,0!"];
}](_images/graphviz-db2920cace480487d7d9f480027b6e67177e2663.png)
Edge
SELECT * FROM pgr_contractionLinear(
$$SELECT * FROM (VALUES
(1, 1, 2, 1),
(2, 2, 3, 1),
(2, 3, 4, 1))
AS edges(id,source,target,cost)$$);
type | id | contracted_vertices | source | target | cost
------+----+---------------------+--------+--------+------
e | -1 | {2,3} | 1 | 4 | 3
(1 row)
Creating the contracted graph¶
Steps for the creation of the contracted graph¶
Add additional columns.
ALTER TABLE vertices ADD is_contracted BOOLEAN DEFAULT false;
ALTER TABLE
ALTER TABLE edges ADD is_new BOOLEAN DEFAULT false;
ALTER TABLE
ALTER TABLE edges ADD contracted_vertices BIGINT[];
ALTER TABLE
Save results into a table.
SELECT * INTO contraction_results
FROM pgr_contractionLinear(
'SELECT id, source, target, cost, reverse_cost FROM edges',
directed => false);
SELECT 3
Use is_contracted
column to indicate the vertices that are contracted.
UPDATE vertices
SET is_contracted = true
WHERE id IN (SELECT unnest(contracted_vertices) FROM contraction_results);
UPDATE 3
The contracted vertices are not part of the contracted graph.
SELECT id, is_contracted
FROM vertices WHERE is_contracted ORDER BY id;
id | is_contracted
----+---------------
3 | t
15 | t
17 | t
(3 rows)
Insert the new edges generated by pgr_contraction.
INSERT INTO edges(source, target, cost, reverse_cost, contracted_vertices, is_new)
SELECT source, target, cost, -1, contracted_vertices, true
FROM contraction_results;
INSERT 0 3
Create the contracted graph.
CREATE VIEW contracted_graph AS
WITH
vertices_in_graph AS (
SELECT id FROM vertices WHERE NOT is_contracted
)
SELECT id, source, target, cost, reverse_cost
FROM edges
WHERE source IN (SELECT * FROM vertices_in_graph)
AND target IN (SELECT * FROM vertices_in_graph)
ORDER BY id;
CREATE VIEW
The contracted graph¶
SELECT * FROM contracted_graph ORDER by id;
id | source | target | cost | reverse_cost
----+--------+--------+------+--------------
1 | 5 | 6 | 1 | 1
2 | 6 | 10 | -1 | 1
4 | 6 | 7 | 1 | 1
5 | 10 | 11 | 1 | -1
8 | 7 | 11 | 1 | 1
9 | 11 | 16 | 1 | 1
10 | 7 | 8 | 1 | 1
11 | 11 | 12 | 1 | -1
12 | 8 | 12 | 1 | -1
14 | 8 | 9 | 1 | 1
17 | 2 | 4 | 1 | 1
18 | 13 | 14 | 1 | 1
19 | 1 | 7 | 2 | -1
20 | 12 | 16 | 2 | -1
21 | 10 | 16 | 2 | -1
(15 rows)
![graph G {
splines=false;
1,2,4,5,6,7,8,9,10,11,12,13,14,16 [shape=circle;style=filled;color=cyan;fontsize=8;width=0.3;fixedsize=true];
1 -- 7 [label="19, (2, {3})",fontsize=8];
12 -- 16 [label="20, (2, {17})",fontsize=8];
10 -- 16 [label="21, (2, {15})",fontsize=8];
5 -- 6 [label="1",fontsize=8]; 6 -- 10 [label="2",fontsize=8];
6 -- 7 [label="4",fontsize=8];
10 -- 11 [label="5",fontsize=8];
7 -- 11 [label="8",fontsize=8];
11 -- 16 [label="9",fontsize=8]; 7 -- 8 [label="10",fontsize=8];
11 -- 12 [label="11",fontsize=8]; 8 -- 12 [label="12",fontsize=8];
8 -- 9 [label="",fontsize=8];
2 -- 4 [label="17",fontsize=8]; 13 -- 14 [label="18",fontsize=8];
1 [pos="0,2!"]; 2 [pos="0.5,3.5!"];
4 [pos="2,3.5!"];
5 [pos="2,0!"]; 6 [pos="2,1!"];
7 [pos="2,2!"]; 8 [pos="2,3!"];
9 [pos="2,4!"]; 10 [pos="3,1!"];
11 [pos="3,2!"]; 12 [pos="3,3!"];
13 [pos="3.5,2.3!"]; 14 [pos="3.5,4!"];
16 [pos="4,2!"];
}](_images/graphviz-0539f2097024ee3664e745ed5dadc5882fc6bb36.png)
Using when departure and destination are in the contracted graph¶
SELECT *
FROM pgr_dijkstra('SELECT * FROM contracted_graph', 7, 16);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
1 | 1 | 7 | 16 | 7 | 8 | 1 | 0
2 | 2 | 7 | 16 | 11 | 9 | 1 | 1
3 | 3 | 7 | 16 | 16 | -1 | 0 | 2
(3 rows)
![graph G {
splines=false;
1,2,4,5,6,7,8,9,10,11,12,13,14,16 [shape=circle;style=filled;color=cyan;fontsize=8;width=0.3;fixedsize=true];
1 -- 7 [label="19, (2, {3})",fontsize=8];
12 -- 16 [label="20, (2, {17})",fontsize=8];
10 -- 16 [label="21, (2, {15})",fontsize=8];
5 -- 6 [label="1",fontsize=8]; 6 -- 10 [label="2",fontsize=8];
6 -- 7 [label="4",fontsize=8];
10 -- 11 [label="5",fontsize=8];
7 -- 11 [label="8",fontsize=8;color=red];
11 -- 16 [label="9",fontsize=8;color=red]; 7 -- 8 [label="10",fontsize=8];
11 -- 12 [label="11",fontsize=8]; 8 -- 12 [label="12",fontsize=8];
8 -- 9 [label="",fontsize=8];
2 -- 4 [label="17",fontsize=8]; 13 -- 14 [label="18",fontsize=8];
1 [pos="0,2!"]; 2 [pos="0.5,3.5!"];
4 [pos="2,3.5!"];
5 [pos="2,0!"]; 6 [pos="2,1!"];
7 [pos="2,2!"]; 8 [pos="2,3!"];
9 [pos="2,4!"]; 10 [pos="3,1!"];
11 [pos="3,2!"]; 12 [pos="3,3!"];
13 [pos="3.5,2.3!"]; 14 [pos="3.5,4!"];
16 [pos="4,2!"];
}](_images/graphviz-a3f31bc8a0a6461912a48c178829e7fd344a7244.png)
Using when departure/destination is not in the contracted graph¶
SELECT * FROM pgr_dijkstra(
'WITH in_line AS (SELECT contracted_vertices FROM edges WHERE 17 = ANY(contracted_vertices))
SELECT id, source, target, cost, reverse_cost
FROM edges, in_line
WHERE source = ANY(in_line.contracted_vertices) OR target = ANY(in_line.contracted_vertices)
UNION
SELECT id, source, target, cost, reverse_cost FROM contracted_graph',
1, 17);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
1 | 1 | 1 | 17 | 1 | 19 | 2 | 0
2 | 2 | 1 | 17 | 7 | 8 | 1 | 2
3 | 3 | 1 | 17 | 11 | 9 | 1 | 3
4 | 4 | 1 | 17 | 16 | 15 | 1 | 4
5 | 5 | 1 | 17 | 17 | -1 | 0 | 5
(5 rows)
![graph G {
17 [shape=circle;style=filled;color=lightgreen;fontsize=8;width=0.3;fixedsize=true];
1,2,4,5,6,7,8,9,10,11,12,13,14,16 [shape=circle;style=filled;color=cyan;fontsize=8;width=0.3;fixedsize=true];
1 -- 7 [label="19, (2, {3})",fontsize=8;color=red];
12 -- 16 [label="20, (2, {17})",fontsize=8];
10 -- 16 [label="21, (2, {15})",fontsize=8];
5 -- 6 [label="1",fontsize=8]; 6 -- 10 [label="2",fontsize=8];
6 -- 7 [label="4",fontsize=8];
10 -- 11 [label="5",fontsize=8];
7 -- 11 [label="8",fontsize=8;color=red]; 12 -- 17 [label="13",fontsize=8];
11 -- 16 [label="9",fontsize=8;color=red]; 7 -- 8 [label="10",fontsize=8];
11 -- 12 [label="11",fontsize=8]; 8 -- 12 [label="12",fontsize=8];
8 -- 9 [label="",fontsize=8]; 16 -- 17 [label="15",fontsize=8;color=red];
2 -- 4 [label="17",fontsize=8]; 13 -- 14 [label="18",fontsize=8];
1 [pos="0,2!"]; 2 [pos="0.5,3.5!"];
4 [pos="2,3.5!"];
5 [pos="2,0!"]; 6 [pos="2,1!"];
7 [pos="2,2!"]; 8 [pos="2,3!"];
9 [pos="2,4!"]; 10 [pos="3,1!"];
11 [pos="3,2!"]; 12 [pos="3,3!"];
13 [pos="3.5,2.3!"]; 14 [pos="3.5,4!"];
16 [pos="4,2!"]; 17 [pos="4,3!"];
}](_images/graphviz-083b6038b8df39caaf7f1ed454f2e4c2a8921297.png)
See Also¶
Indices and tables