pgr_dijkstra

pgr_dijkstra - Camino más corto utilizando el algoritmo de Dijkstra.

Disponibilidad

  • Versión 3.5.0

    • Estandarización de las columnas de salida a (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

      • pgr_dijkstra(One to One) added start_vid and end_vid columns.

      • pgr_dijkstra(One to Many) added end_vid column.

      • pgr_dijkstra(Many to One) added start_vid column.

  • Versión 3.1.0

    • New proposed signature:

      • pgr_dijkstra(Combinations)

  • Versión 3.0.0

    • Function promoted to official.

  • Version 2.2.0

    • New proposed signatures:

      • pgr_dijkstra(One to Many)

      • pgr_dijkstra(Many to One)

      • pgr_dijkstra(Many to Many)

  • Versión 2.1.0

    • Signature change on pgr_dijkstra(One to One)

  • Versión 2.0.0

    • Official function.

Descripción

Algoritmo de Dijkstra, concebido por el informático holandés Edsger Dijkstra en 1956. Es un algoritmo de búsqueda en grafos que resuelve el problema de ruta más corta para un grafo con costos de aristas no negativos, produciendo la ruta más corta desde un vértice inicial a un vértice final . Esta implementación se puede utilizar con un grafos dirigidos y no dirigidos.

  • El proceso se realiza sólo en aristas con costos positivos.

    • Valor no negativo en una columna de costo se interpreta como la arista no exite.

  • Los valores se devuelven cuando hay una ruta.

  • Cuando no hay ruta:

    • Cuando el vértice de salida y el vértice destino son iguales.

      • El costo agregado de los valores no incluídos \((v, v)\) es \(0\)

    • Cuando el vértice de salida y el vértice destino son diferentes y no hay ninguna ruta:

      • El costo agregado de los valores no incluídos \((u, v)\) es :math: infty

  • Para fines de optimización, se ignora cualquier valor duplicado en los vertices de salida o destino.

  • Tiempo de ejecución: \(O(| start\_vids | * (V \log V + E))\)

Boost Graph inside Boost Graph Inside

Firmas

Resumen

pgr_dijkstra(SQL de aristas, salida, destino, [directed])
pgr_dijkstra(SQL de aristas, salida, destinos, [directed])
pgr_dijkstra(SQL de aristas, salidas, destino, [directed])
pgr_dijkstra(SQL de aristas, salidas, destinos, [directed])
pgr_dijkstra(SQL de aristas, SQL de combinaciones, [directed])
Regresa el conjunto de (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
O CONJUNTO VACÍO

Advertencia

Cambio de ruptura en 3.5.0

Leer Guía de migración sobre como migrar de las columnas de resultados anteriores a las nuevas columnas de resultados.

Uno a Uno

pgr_dijkstra(SQL de aristas, salida, destino, [directed])
Regresa el conjunto de (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
O CONJUNTO VACÍO
Ejemplo:

Del vértice \(6\) al vértice \(10\) en un grafo dirigido

SELECT * FROM pgr_Dijkstra(
  'select id, source, target, cost, reverse_cost from edges',
  6, 10, true);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |      10 |    6 |    4 |    1 |        0
   2 |        2 |         6 |      10 |    7 |    8 |    1 |        1
   3 |        3 |         6 |      10 |   11 |    9 |    1 |        2
   4 |        4 |         6 |      10 |   16 |   16 |    1 |        3
   5 |        5 |         6 |      10 |   15 |    3 |    1 |        4
   6 |        6 |         6 |      10 |   10 |   -1 |    0 |        5
(6 rows)

Uno a Muchos

pgr_dijkstra(SQL de aristas, salida, destinos, [directed])
Regresa el conjunto de (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
O CONJUNTO VACÍO
Ejemplo:

Del vértice \(6\) a los vértices \(\{10, 17\}\) en un grafo no dirigido

SELECT * FROM pgr_Dijkstra(
  'select id, source, target, cost, reverse_cost from edges',
  6, ARRAY[10, 17]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |      10 |    6 |    4 |    1 |        0
   2 |        2 |         6 |      10 |    7 |    8 |    1 |        1
   3 |        3 |         6 |      10 |   11 |    9 |    1 |        2
   4 |        4 |         6 |      10 |   16 |   16 |    1 |        3
   5 |        5 |         6 |      10 |   15 |    3 |    1 |        4
   6 |        6 |         6 |      10 |   10 |   -1 |    0 |        5
   7 |        1 |         6 |      17 |    6 |    4 |    1 |        0
   8 |        2 |         6 |      17 |    7 |    8 |    1 |        1
   9 |        3 |         6 |      17 |   11 |    9 |    1 |        2
  10 |        4 |         6 |      17 |   16 |   15 |    1 |        3
  11 |        5 |         6 |      17 |   17 |   -1 |    0 |        4
(11 rows)

Muchos a Uno

pgr_dijkstra(SQL de aristas, salidas, destino, [directed])
Regresa el conjunto de (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
O CONJUNTO VACÍO
Ejemplo:

De los vértices \(\{6, 1\}\) al vertice \(17\) en un grafo dirigido

SELECT * FROM pgr_Dijkstra(
  'select id, source, target, cost, reverse_cost from edges',
  ARRAY[6, 1], 17);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         1 |      17 |    1 |    6 |    1 |        0
   2 |        2 |         1 |      17 |    3 |    7 |    1 |        1
   3 |        3 |         1 |      17 |    7 |    8 |    1 |        2
   4 |        4 |         1 |      17 |   11 |   11 |    1 |        3
   5 |        5 |         1 |      17 |   12 |   13 |    1 |        4
   6 |        6 |         1 |      17 |   17 |   -1 |    0 |        5
   7 |        1 |         6 |      17 |    6 |    4 |    1 |        0
   8 |        2 |         6 |      17 |    7 |    8 |    1 |        1
   9 |        3 |         6 |      17 |   11 |   11 |    1 |        2
  10 |        4 |         6 |      17 |   12 |   13 |    1 |        3
  11 |        5 |         6 |      17 |   17 |   -1 |    0 |        4
(11 rows)

Muchos a Muchos

pgr_dijkstra(SQL de aristas, salidas, destinos, [directed])
Regresa el conjunto de (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
O CONJUNTO VACÍO
Ejemplo:

De los vértices \(\{6, 1\}\) a los vértices \(\{10, 17\}\) en un grafo no dirigido

SELECT * FROM pgr_Dijkstra(
  'select id, source, target, cost, reverse_cost from edges',
  ARRAY[6, 1], ARRAY[10, 17],
  directed => false);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         1 |      10 |    1 |    6 |    1 |        0
   2 |        2 |         1 |      10 |    3 |    7 |    1 |        1
   3 |        3 |         1 |      10 |    7 |    4 |    1 |        2
   4 |        4 |         1 |      10 |    6 |    2 |    1 |        3
   5 |        5 |         1 |      10 |   10 |   -1 |    0 |        4
   6 |        1 |         1 |      17 |    1 |    6 |    1 |        0
   7 |        2 |         1 |      17 |    3 |    7 |    1 |        1
   8 |        3 |         1 |      17 |    7 |    8 |    1 |        2
   9 |        4 |         1 |      17 |   11 |    9 |    1 |        3
  10 |        5 |         1 |      17 |   16 |   15 |    1 |        4
  11 |        6 |         1 |      17 |   17 |   -1 |    0 |        5
  12 |        1 |         6 |      10 |    6 |    2 |    1 |        0
  13 |        2 |         6 |      10 |   10 |   -1 |    0 |        1
  14 |        1 |         6 |      17 |    6 |    4 |    1 |        0
  15 |        2 |         6 |      17 |    7 |    8 |    1 |        1
  16 |        3 |         6 |      17 |   11 |   11 |    1 |        2
  17 |        4 |         6 |      17 |   12 |   13 |    1 |        3
  18 |        5 |         6 |      17 |   17 |   -1 |    0 |        4
(18 rows)

Combinaciones

pgr_dijkstra(SQL de aristas, SQL de combinaciones, [directed])
Regresa el conjunto de (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
O CONJUNTO VACÍO
Ejemplo:

Usando una tabla de combinaciones en un grafo no dirigido

La tabla de combinaciones:

SELECT source, target FROM combinations;
 source | target
--------+--------
      5 |      6
      5 |     10
      6 |      5
      6 |     15
      6 |     14
(5 rows)

La consulta:

SELECT * FROM pgr_Dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  'SELECT source, target FROM combinations',
  false);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         5 |       6 |    5 |    1 |    1 |        0
   2 |        2 |         5 |       6 |    6 |   -1 |    0 |        1
   3 |        1 |         5 |      10 |    5 |    1 |    1 |        0
   4 |        2 |         5 |      10 |    6 |    2 |    1 |        1
   5 |        3 |         5 |      10 |   10 |   -1 |    0 |        2
   6 |        1 |         6 |       5 |    6 |    1 |    1 |        0
   7 |        2 |         6 |       5 |    5 |   -1 |    0 |        1
   8 |        1 |         6 |      15 |    6 |    2 |    1 |        0
   9 |        2 |         6 |      15 |   10 |    3 |    1 |        1
  10 |        3 |         6 |      15 |   15 |   -1 |    0 |        2
(10 rows)

Parámetros

Columna

Tipo

Descripción

SQL de aristas

TEXT

SQL de aristas como se describe a continuación

SQL de combinaciones

TEXT

SQL de combinaciones como se describe a abajo

salida

BIGINT

Identificador del vértice inicial de la ruta.

salidas

ARRAY[BIGINT]

Arreglo de identificadores de vértices iniciales.

destino

BIGINT

Identificador del vértice final de la ruta.

destinos

ARRAY[BIGINT]

Arreglo de identificadores de vértices finales.

Parámetros opcionales

Columna

Tipo

x Defecto

Descripción

directed

BOOLEAN

true

  • Cuando true el gráfo se considera Dirigido

  • Cuando false el gráfo se considera No Dirigido.

Consultas Internas

SQL aristas

Columna

Tipo

x Defecto

Descripción

id

ENTEROS

Identificador de la arista.

source

ENTEROS

Identificador del primer vértice de la arista.

target

ENTEROS

Identificador del segundo vértice de la arista.

cost

FLOTANTES

Peso de la arista (source, target)

reverse_cost

FLOTANTES

-1

Peso de la arista (target, source)

  • Cuando negativo: la arista (target, source) no existe, por lo tanto no es parte del grafo.

Donde:

ENTEROS:

SMALLINT, INTEGER, BIGINT

FLOTANTES:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

SQL Combinaciones

Parámetro

Tipo

Descripción

source

ENTEROS

Identificador del vértice de partida.

target

ENTEROS

Identificador del vértice de llegada.

Donde:

ENTEROS:

SMALLINT, INTEGER, BIGINT

Columnas de resultados

Devuelve el conjunto de (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Columna

Tipo

Descripción

seq

INTEGER

Valor secuencial a partir de 1.

path_seq

INTEGER

Posición relativa en la ruta. Tiene el valor 1 para el inicio de una ruta.

start_vid

BIGINT

Identificador del vértice inicial. Se devuelve cuando hay varias vetrices iniciales en la consulta.

end_vid

BIGINT

Identificador del vértice final. Se devuelve cuando hay varios vértices finales en la consulta.

node

BIGINT

Identificador del nodo en la ruta de start_vid a end_vid.

edge

BIGINT

Identificador de la arista utilizado para ir del node al siguiente nodo de la secuencia de ruta. -1 para el último nodo de la ruta.

cost

FLOAT

Costo para atravesar desde node usando edge hasta el siguiente nodo en la secuencia de la ruta.

agg_cost

FLOAT

Costo agregado desde start_vid hasta node.

Ejemplos Adicionales

Ejemplo:

Demostración de ignorar los valores repertidos, y resultado ordenado.

SELECT * FROM pgr_Dijkstra(
  'select id, source, target, cost, reverse_cost from edges',
  ARRAY[7, 10, 15, 10, 10, 15], ARRAY[10, 7, 10, 15]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         7 |      10 |    7 |    8 |    1 |        0
   2 |        2 |         7 |      10 |   11 |    9 |    1 |        1
   3 |        3 |         7 |      10 |   16 |   16 |    1 |        2
   4 |        4 |         7 |      10 |   15 |    3 |    1 |        3
   5 |        5 |         7 |      10 |   10 |   -1 |    0 |        4
   6 |        1 |         7 |      15 |    7 |    8 |    1 |        0
   7 |        2 |         7 |      15 |   11 |    9 |    1 |        1
   8 |        3 |         7 |      15 |   16 |   16 |    1 |        2
   9 |        4 |         7 |      15 |   15 |   -1 |    0 |        3
  10 |        1 |        10 |       7 |   10 |    5 |    1 |        0
  11 |        2 |        10 |       7 |   11 |    8 |    1 |        1
  12 |        3 |        10 |       7 |    7 |   -1 |    0 |        2
  13 |        1 |        10 |      15 |   10 |    5 |    1 |        0
  14 |        2 |        10 |      15 |   11 |    9 |    1 |        1
  15 |        3 |        10 |      15 |   16 |   16 |    1 |        2
  16 |        4 |        10 |      15 |   15 |   -1 |    0 |        3
  17 |        1 |        15 |       7 |   15 |   16 |    1 |        0
  18 |        2 |        15 |       7 |   16 |    9 |    1 |        1
  19 |        3 |        15 |       7 |   11 |    8 |    1 |        2
  20 |        4 |        15 |       7 |    7 |   -1 |    0 |        3
  21 |        1 |        15 |      10 |   15 |    3 |    1 |        0
  22 |        2 |        15 |      10 |   10 |   -1 |    0 |        1
(22 rows)

Ejemplo 2:

Haciendo vértices de salida igual que vértices destino

SELECT * FROM pgr_Dijkstra(
  'select id, source, target, cost, reverse_cost from edges',
  ARRAY[7, 10, 15], ARRAY[7, 10, 15]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         7 |      10 |    7 |    8 |    1 |        0
   2 |        2 |         7 |      10 |   11 |    9 |    1 |        1
   3 |        3 |         7 |      10 |   16 |   16 |    1 |        2
   4 |        4 |         7 |      10 |   15 |    3 |    1 |        3
   5 |        5 |         7 |      10 |   10 |   -1 |    0 |        4
   6 |        1 |         7 |      15 |    7 |    8 |    1 |        0
   7 |        2 |         7 |      15 |   11 |    9 |    1 |        1
   8 |        3 |         7 |      15 |   16 |   16 |    1 |        2
   9 |        4 |         7 |      15 |   15 |   -1 |    0 |        3
  10 |        1 |        10 |       7 |   10 |    5 |    1 |        0
  11 |        2 |        10 |       7 |   11 |    8 |    1 |        1
  12 |        3 |        10 |       7 |    7 |   -1 |    0 |        2
  13 |        1 |        10 |      15 |   10 |    5 |    1 |        0
  14 |        2 |        10 |      15 |   11 |    9 |    1 |        1
  15 |        3 |        10 |      15 |   16 |   16 |    1 |        2
  16 |        4 |        10 |      15 |   15 |   -1 |    0 |        3
  17 |        1 |        15 |       7 |   15 |   16 |    1 |        0
  18 |        2 |        15 |       7 |   16 |    9 |    1 |        1
  19 |        3 |        15 |       7 |   11 |    8 |    1 |        2
  20 |        4 |        15 |       7 |    7 |   -1 |    0 |        3
  21 |        1 |        15 |      10 |   15 |    3 |    1 |        0
  22 |        2 |        15 |      10 |   10 |   -1 |    0 |        1
(22 rows)

Ejemplo:

Manualmente asignar combinaciones de vértices.

SELECT * FROM pgr_Dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)');
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
   3 |        1 |         6 |      10 |    6 |    4 |    1 |        0
   4 |        2 |         6 |      10 |    7 |    8 |    1 |        1
   5 |        3 |         6 |      10 |   11 |    9 |    1 |        2
   6 |        4 |         6 |      10 |   16 |   16 |    1 |        3
   7 |        5 |         6 |      10 |   15 |    3 |    1 |        4
   8 |        6 |         6 |      10 |   10 |   -1 |    0 |        5
   9 |        1 |        12 |      10 |   12 |   13 |    1 |        0
  10 |        2 |        12 |      10 |   17 |   15 |    1 |        1
  11 |        3 |        12 |      10 |   16 |   16 |    1 |        2
  12 |        4 |        12 |      10 |   15 |    3 |    1 |        3
  13 |        5 |        12 |      10 |   10 |   -1 |    0 |        4
(13 rows)

Los ejemplos de esta sección se basan en la red Datos Muestra.

Para grafos dirigidos con columnas cost and reverse_cost

_images/Fig1-originalData.png

Grafo dirigido con columnas de costo y costo de regreso

1) Ruta de \(6\) a \(10\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  6, 10
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |      10 |    6 |    4 |    1 |        0
   2 |        2 |         6 |      10 |    7 |    8 |    1 |        1
   3 |        3 |         6 |      10 |   11 |    9 |    1 |        2
   4 |        4 |         6 |      10 |   16 |   16 |    1 |        3
   5 |        5 |         6 |      10 |   15 |    3 |    1 |        4
   6 |        6 |         6 |      10 |   10 |   -1 |    0 |        5
(6 rows)

2) Ruta de \(6\) a \(7\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  6, 7
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
(2 rows)

3) Ruta de \(12\) a \(10\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  12, 10
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |        12 |      10 |   12 |   13 |    1 |        0
   2 |        2 |        12 |      10 |   17 |   15 |    1 |        1
   3 |        3 |        12 |      10 |   16 |   16 |    1 |        2
   4 |        4 |        12 |      10 |   15 |    3 |    1 |        3
   5 |        5 |        12 |      10 |   10 |   -1 |    0 |        4
(5 rows)

4) Ruta de \(12\) a \(7\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  12, 7
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |        12 |       7 |   12 |   13 |    1 |        0
   2 |        2 |        12 |       7 |   17 |   15 |    1 |        1
   3 |        3 |        12 |       7 |   16 |    9 |    1 |        2
   4 |        4 |        12 |       7 |   11 |    8 |    1 |        3
   5 |        5 |        12 |       7 |    7 |   -1 |    0 |        4
(5 rows)

5) Usando Uno a Muchos para obtener la solución de los ejemplos 1 y 2

Rutas \(\{6\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  6, ARRAY[10, 7]
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
   3 |        1 |         6 |      10 |    6 |    4 |    1 |        0
   4 |        2 |         6 |      10 |    7 |    8 |    1 |        1
   5 |        3 |         6 |      10 |   11 |    9 |    1 |        2
   6 |        4 |         6 |      10 |   16 |   16 |    1 |        3
   7 |        5 |         6 |      10 |   15 |    3 |    1 |        4
   8 |        6 |         6 |      10 |   10 |   -1 |    0 |        5
(8 rows)

6) Usando Muchos a Uno para obtener la solución de los ejemplos 2 y 4

Rutas \(\{6, 12\}\rightarrow\{7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  ARRAY[6, 12], 7
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
   3 |        1 |        12 |       7 |   12 |   13 |    1 |        0
   4 |        2 |        12 |       7 |   17 |   15 |    1 |        1
   5 |        3 |        12 |       7 |   16 |    9 |    1 |        2
   6 |        4 |        12 |       7 |   11 |    8 |    1 |        3
   7 |        5 |        12 |       7 |    7 |   -1 |    0 |        4
(7 rows)

7) Usando Muchos a Muchos para obtener la solución de los ejemplos 1 y 4

Rutas \(\{6, 12\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  ARRAY[6, 12], ARRAY[10,7]
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
   3 |        1 |         6 |      10 |    6 |    4 |    1 |        0
   4 |        2 |         6 |      10 |    7 |    8 |    1 |        1
   5 |        3 |         6 |      10 |   11 |    9 |    1 |        2
   6 |        4 |         6 |      10 |   16 |   16 |    1 |        3
   7 |        5 |         6 |      10 |   15 |    3 |    1 |        4
   8 |        6 |         6 |      10 |   10 |   -1 |    0 |        5
   9 |        1 |        12 |       7 |   12 |   13 |    1 |        0
  10 |        2 |        12 |       7 |   17 |   15 |    1 |        1
  11 |        3 |        12 |       7 |   16 |    9 |    1 |        2
  12 |        4 |        12 |       7 |   11 |    8 |    1 |        3
  13 |        5 |        12 |       7 |    7 |   -1 |    0 |        4
  14 |        1 |        12 |      10 |   12 |   13 |    1 |        0
  15 |        2 |        12 |      10 |   17 |   15 |    1 |        1
  16 |        3 |        12 |      10 |   16 |   16 |    1 |        2
  17 |        4 |        12 |      10 |   15 |    3 |    1 |        3
  18 |        5 |        12 |      10 |   10 |   -1 |    0 |        4
(18 rows)

8) Usando Combinaciones para obtener la solución de los ejemplos 1 a 3

Rutas \(\{6\}\rightarrow\{10, 7\}\cup\{12\}\rightarrow\{10\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)'
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
   3 |        1 |         6 |      10 |    6 |    4 |    1 |        0
   4 |        2 |         6 |      10 |    7 |    8 |    1 |        1
   5 |        3 |         6 |      10 |   11 |    9 |    1 |        2
   6 |        4 |         6 |      10 |   16 |   16 |    1 |        3
   7 |        5 |         6 |      10 |   15 |    3 |    1 |        4
   8 |        6 |         6 |      10 |   10 |   -1 |    0 |        5
   9 |        1 |        12 |      10 |   12 |   13 |    1 |        0
  10 |        2 |        12 |      10 |   17 |   15 |    1 |        1
  11 |        3 |        12 |      10 |   16 |   16 |    1 |        2
  12 |        4 |        12 |      10 |   15 |    3 |    1 |        3
  13 |        5 |        12 |      10 |   10 |   -1 |    0 |        4
(13 rows)

Para grafos no dirigidos con columnas cost y reverse_cost

_images/Fig6-undirected.png

Grafo no dirigido con columnas de costo y costo de regreso

9) Ruta de \(6\) a \(10\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  6, 10,
  false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |      10 |    6 |    2 |    1 |        0
   2 |        2 |         6 |      10 |   10 |   -1 |    0 |        1
(2 rows)

10) Ruta de \(6\) a \(7\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  6, 7,
  false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
(2 rows)

11) Ruta de \(12\) a \(10\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  12, 10,
  false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |        12 |      10 |   12 |   11 |    1 |        0
   2 |        2 |        12 |      10 |   11 |    5 |    1 |        1
   3 |        3 |        12 |      10 |   10 |   -1 |    0 |        2
(3 rows)

12) Ruta de \(12\) a \(7\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  12, 7,
  false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |        12 |       7 |   12 |   12 |    1 |        0
   2 |        2 |        12 |       7 |    8 |   10 |    1 |        1
   3 |        3 |        12 |       7 |    7 |   -1 |    0 |        2
(3 rows)

13) Usando Uno a Muchos para obtener la solución de los ejemplos 9 y 10

Rutas \(\{6\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  6, ARRAY[10,7],
  false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
   3 |        1 |         6 |      10 |    6 |    2 |    1 |        0
   4 |        2 |         6 |      10 |   10 |   -1 |    0 |        1
(4 rows)

14) Usando Muchos a Uno para obtener la solución de los ejemplos 10 y 12

Rutas \(\{6, 12\}\rightarrow\{7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  ARRAY[6,12], 7,
  false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
   3 |        1 |        12 |       7 |   12 |   12 |    1 |        0
   4 |        2 |        12 |       7 |    8 |   10 |    1 |        1
   5 |        3 |        12 |       7 |    7 |   -1 |    0 |        2
(5 rows)

15) Usando Muchos a Muchos para obtener la solución de los ejemplos 9 y 12

Rutas \(\{6, 12\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  ARRAY[6, 12], ARRAY[10,7],
  false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
   3 |        1 |         6 |      10 |    6 |    2 |    1 |        0
   4 |        2 |         6 |      10 |   10 |   -1 |    0 |        1
   5 |        1 |        12 |       7 |   12 |   12 |    1 |        0
   6 |        2 |        12 |       7 |    8 |   10 |    1 |        1
   7 |        3 |        12 |       7 |    7 |   -1 |    0 |        2
   8 |        1 |        12 |      10 |   12 |   11 |    1 |        0
   9 |        2 |        12 |      10 |   11 |    5 |    1 |        1
  10 |        3 |        12 |      10 |   10 |   -1 |    0 |        2
(10 rows)

16) Usando Combinaciones para obtener la solución de los ejemplos 9 a 13

Rutas \(\{6\}\rightarrow\{10, 7\}\cup\{12\}\rightarrow\{10\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)',
  false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
   3 |        1 |         6 |      10 |    6 |    2 |    1 |        0
   4 |        2 |         6 |      10 |   10 |   -1 |    0 |        1
   5 |        1 |        12 |      10 |   12 |   11 |    1 |        0
   6 |        2 |        12 |      10 |   11 |    5 |    1 |        1
   7 |        3 |        12 |      10 |   10 |   -1 |    0 |        2
(7 rows)

Para grafos dirigidos con columna``cost``

_images/Fig2-cost.png

Grafo dirigido con solo la columna costo

17) Ruta de \(6\) a \(10\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  6, 10
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
(0 rows)

18) Ruta de \(6\) a \(7\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  6, 7
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
(2 rows)

19) Ruta de \(12\) a \(10\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  12, 10
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
(0 rows)

20) Ruta de \(12\) a \(7\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  12, 7
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
(0 rows)

21) Usando Uno a Muchos para obtener la solución de los ejemplos 17 y 18

Rutas \(\{6\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  6, ARRAY[10,7]
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
(2 rows)

22) Usando Muchos a Uno para obtener la solución de los ejemplos 18 y 20

Rutas \(\{6, 12\}\rightarrow\{7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  ARRAY[6,12], 7
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
(2 rows)

23) Usando Muchos a Muchos para obtener la solución de los ejemplos 17 y 20

Rutas \(\{6, 12\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  ARRAY[6, 12], ARRAY[10,7]
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
(2 rows)

24) Usando Combinaciones para obtener la solución de los ejemplos 17 a 19

Rutas \(\{6\}\rightarrow\{10, 7\}\cup\{12\}\rightarrow\{10\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)'
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
(2 rows)

Para grafos no dirigidos con columna``cost``

_images/Fig4-costUndirected.png

Grafo no dirigido con solo la columna costo

25) Ruta de \(6\) a \(10\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  6, 10,
  false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |      10 |    6 |    4 |    1 |        0
   2 |        2 |         6 |      10 |    7 |    8 |    1 |        1
   3 |        3 |         6 |      10 |   11 |    5 |    1 |        2
   4 |        4 |         6 |      10 |   10 |   -1 |    0 |        3
(4 rows)

26) Ruta de \(6\) a \(7\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  6, 7,
  false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
(2 rows)

27) Ruta de \(12\) a \(10\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  12, 10,
  false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |        12 |      10 |   12 |   11 |    1 |        0
   2 |        2 |        12 |      10 |   11 |    5 |    1 |        1
   3 |        3 |        12 |      10 |   10 |   -1 |    0 |        2
(3 rows)

28) Ruta de \(12\) a \(7\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  12, 7,
  false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |        12 |       7 |   12 |   12 |    1 |        0
   2 |        2 |        12 |       7 |    8 |   10 |    1 |        1
   3 |        3 |        12 |       7 |    7 |   -1 |    0 |        2
(3 rows)

29) Usando Uno a Muchos para obtener la solución de los ejemplos 25 y 26

Rutas \(\{6\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  6, ARRAY[10,7],
  false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
   3 |        1 |         6 |      10 |    6 |    4 |    1 |        0
   4 |        2 |         6 |      10 |    7 |    8 |    1 |        1
   5 |        3 |         6 |      10 |   11 |    5 |    1 |        2
   6 |        4 |         6 |      10 |   10 |   -1 |    0 |        3
(6 rows)

30) Usando Muchos a Uno para obtener la solución de los ejemplos 26 y 28

Rutas \(\{6, 12\}\rightarrow\{7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  ARRAY[6,12], 7,
  false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
   3 |        1 |        12 |       7 |   12 |   12 |    1 |        0
   4 |        2 |        12 |       7 |    8 |   10 |    1 |        1
   5 |        3 |        12 |       7 |    7 |   -1 |    0 |        2
(5 rows)

31) Usando Muchos a Muchos para obtener la solución de los ejemplos 25 y 28

Rutas \(\{6, 12\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  ARRAY[6, 12], ARRAY[10,7],
  false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
   3 |        1 |         6 |      10 |    6 |    4 |    1 |        0
   4 |        2 |         6 |      10 |    7 |    8 |    1 |        1
   5 |        3 |         6 |      10 |   11 |    5 |    1 |        2
   6 |        4 |         6 |      10 |   10 |   -1 |    0 |        3
   7 |        1 |        12 |       7 |   12 |   12 |    1 |        0
   8 |        2 |        12 |       7 |    8 |   10 |    1 |        1
   9 |        3 |        12 |       7 |    7 |   -1 |    0 |        2
  10 |        1 |        12 |      10 |   12 |   11 |    1 |        0
  11 |        2 |        12 |      10 |   11 |    5 |    1 |        1
  12 |        3 |        12 |      10 |   10 |   -1 |    0 |        2
(12 rows)

32) Usando Combinaciones para obtener la solución de los ejemplos 25 a 27

Rutas \(\{6\}\rightarrow\{10, 7\}\cup\{12\}\rightarrow\{10\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)',
  false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
   3 |        1 |         6 |      10 |    6 |    4 |    1 |        0
   4 |        2 |         6 |      10 |    7 |    8 |    1 |        1
   5 |        3 |         6 |      10 |   11 |    5 |    1 |        2
   6 |        4 |         6 |      10 |   10 |   -1 |    0 |        3
   7 |        1 |        12 |      10 |   12 |   11 |    1 |        0
   8 |        2 |        12 |      10 |   11 |    5 |    1 |        1
   9 |        3 |        12 |      10 |   10 |   -1 |    0 |        2
(9 rows)

Equivalencias entre firmas

Los siguientes ejemplos son para la ruta \(\{6\}\rightarrow\{10\}\)

33) Usando Uno a Uno

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  6, 10
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |      10 |    6 |    4 |    1 |        0
   2 |        2 |         6 |      10 |    7 |    8 |    1 |        1
   3 |        3 |         6 |      10 |   11 |    9 |    1 |        2
   4 |        4 |         6 |      10 |   16 |   16 |    1 |        3
   5 |        5 |         6 |      10 |   15 |    3 |    1 |        4
   6 |        6 |         6 |      10 |   10 |   -1 |    0 |        5
(6 rows)

34) Usando Uno a Muchos

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  6, ARRAY[10]
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |      10 |    6 |    4 |    1 |        0
   2 |        2 |         6 |      10 |    7 |    8 |    1 |        1
   3 |        3 |         6 |      10 |   11 |    9 |    1 |        2
   4 |        4 |         6 |      10 |   16 |   16 |    1 |        3
   5 |        5 |         6 |      10 |   15 |    3 |    1 |        4
   6 |        6 |         6 |      10 |   10 |   -1 |    0 |        5
(6 rows)

35) Usando Muchos a Uno

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  ARRAY[6], 10
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |      10 |    6 |    4 |    1 |        0
   2 |        2 |         6 |      10 |    7 |    8 |    1 |        1
   3 |        3 |         6 |      10 |   11 |    9 |    1 |        2
   4 |        4 |         6 |      10 |   16 |   16 |    1 |        3
   5 |        5 |         6 |      10 |   15 |    3 |    1 |        4
   6 |        6 |         6 |      10 |   10 |   -1 |    0 |        5
(6 rows)

36) Usando Muchos a Muchos

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  ARRAY[6], ARRAY[10]
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |      10 |    6 |    4 |    1 |        0
   2 |        2 |         6 |      10 |    7 |    8 |    1 |        1
   3 |        3 |         6 |      10 |   11 |    9 |    1 |        2
   4 |        4 |         6 |      10 |   16 |   16 |    1 |        3
   5 |        5 |         6 |      10 |   15 |    3 |    1 |        4
   6 |        6 |         6 |      10 |   10 |   -1 |    0 |        5
(6 rows)

37) Usando Combinaciones

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  'SELECT * FROM (VALUES(6, 10)) AS combinations (source, target)'
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |      10 |    6 |    4 |    1 |        0
   2 |        2 |         6 |      10 |    7 |    8 |    1 |        1
   3 |        3 |         6 |      10 |   11 |    9 |    1 |        2
   4 |        4 |         6 |      10 |   16 |   16 |    1 |        3
   5 |        5 |         6 |      10 |   15 |    3 |    1 |        4
   6 |        6 |         6 |      10 |   10 |   -1 |    0 |        5
(6 rows)

e Also

Índices y tablas